Preliminary Study of 1D Thermal-Hydraulic System Analysis Code Using the Higher-Order Numerical Scheme

Won Woong Lee

woong.aa@kaist.ac.kr

Dept. of Nuclear & Quantum Engineering Korea Advanced Institute of Science and Technology

CONTENTS

Background

Reactor system analysis codes

- MARS-KS, RELAP5, COBRA-TF, TRACE and SPACE codes..
- has been developed for the realistic & best-estimate thermal-hydraulic analysis of nuclear reactor system.
- Assessment tool for the safety and conservativeness of the nuclear system
- Semi-implicit method for the time integration scheme
- First order numerical methods in both space and time discretization
 - Donor cell scheme (1st order Upwind scheme)
- Widely applied in CFD calculations due to simplicity, high stability
- However, 1st order numerical scheme can lead to excessive numerical diffusion!

Numerical diffusion problem

- Severe problem in the 1st order numerical scheme
- Make the gradients to be smooth in the regions where the gradients should be steep
- Therefore, the accuracy of code can be deteriorated.

Higher order schemes

- FLUENT, Star-CCM+, CFX etc.
- QUICK scheme, Lax-Wendroff scheme, High resolution scheme etc.
- The Taylor series truncation error is decreased because of higher order of error terms
- Numerical diffusion errors can be minimized

Background

Next generation nuclear system safety analysis code •••

RFI AP7

- ✓ INL(Idaho National Lab.)
- 2nd order accurate temporal and spatial discretization
- fully implicit method & fully coupled method
 - PCICE-FFM scheme •
 - JFNK method •
 - Point implicit method
- TRACE
 - \checkmark Oak Ridge National Lab.
 - Centeral difference scheme, 2nd order upwind scheme
 - Non-linear flux limiters MUSCL, Van Leer, Van Albada etc.
- COBRA-TF
 - Univ. Massachusetts Lowell & Oak Ridge National Lab.
 - 2nd order Lax-Wendroff scheme
 - Non-linear flux limiter Van Albada \checkmark

RFI AP-7 Timeline

Lax-Wendroff

Results comparison of 1st order scheme and 2nd order scheme in **COBRA-TF**

Source : Hongbin Zhang et al., RELAP7 Code Development Status Update and Future Plan, 2013

Code Development Status Update and KAIS

Objective & Plan

Research Objective

- To see the applicapability of higher-order numerical scheme in the nuclear system safety analysis code.
- To evaluate numerical accuracy of higher-order numerical schemes.
- To identify the change of stability of higher-order numerical schemes.

Research Plan

- Separate single phase transient analysis code which is possible to calculate in 1st order and 2nd order scheme is built in MATLAB
 - ✓ It is impossible to implement directly 2nd order scheme in MARS-KS which is reference code for this study.
 - In this study, all of test cases is limited in single phase to see only the effect of 1st order and 2nd order scheme.
- By modeling the simple pipe flow, numerical accuracy and stability of higher-order numerical schemes are evaluated.
 - ✓ By using 2nd norm, the numerical accuracy is compared as increasing the mesh size and higher-order schemes.
 - ✓ The maximum Courant number is compared to identify the change of stability.

Numerical Test

- Single phase pipe flow with sine pulse of temperature
 - Description

- ✓ Sensitivity test depending on the higher-order schemes and mesh number
 - 1st order in temporal and spatial (1T1S)
 - 1st order in temporal and 2nd order in spatial (1T2S)
 - 2nd order in temporal and 1st order in spatial (2T1S)
 - 2nd order in temporal and 2nd order in temporal (2T2S)

mesh number : 20 / 40 / 80

- Single phase pipe flow with sine pulse of temperature
 - Pulse width = 5sec & Interval = 1.5sec

(a) MARS vs 1T1S

- Single phase pipe flow with sine pulse of temperature
 - Pulse width = 5sec & Interval = 1.5sec

(b) Higher order sensitivity in mesh 20

- Single phase pipe flow with sine pulse of temperature
 - Pulse width = 5sec & Interval = 1.5sec

(c) Higher order sensitivity in mesh 40

(d) Higher order sensitivity in mesh 80

- Single phase pipe flow with sine pulse of temperature
 - Pulse width = 6sec & Interval = 0sec

(a) MARS vs 1T1S

Single phase pipe flow with sine pulse of temperature

Pulse width = 6sec & Interval = 0sec

(b) Higher order sensitivity in mesh 20

Single phase pipe flow with sine pulse of temperature

Pulse width = 6sec & Interval = 0sec

(c) Higher order sensitivity in mesh 40

(d) Higher order sensitivity in mesh 80

Table.1 Maximum Courant number of NTS codesin case of pulse width 5sec and interval 1.5sec

	1T1S	1T2S	2T1S	2T2S
Mesh 20	1.0	0.27	0.75	0.14
Mesh 40	1.0224	0.27	0.6498	0.136
Mesh 80	1.0147	0.248	0.632	0.124
Average	1.0124	0.2627	0.6773	0.1333

Table.2 Maximum Courant number of NTS codes in case of pulse width 6sec and interval 0sec

	1T1S	1T2S	2T1S	2T2S
Mesh 20	0.9988	0.2628	0.7687	0.1349
Mesh 40	0.9997	0.2499	0.6398	0.124
Mesh 80	0.9999	0.26	0.6119	0.128
Average	0.9995	0.2576	0.6735	0.129

Summary

Summary

- The 2nd order upwind scheme and 2nd order backward Euler scheme are implemented for the spatial and temporal scheme.
- In the 1st order scheme, the temperature distribution is severely distorted due to the numerical diffusion.
- When the only 2nd order sheme in time are applied, the results are not much different from the 1st order scheme in both time and space.
- In the 2nd order spatial scheme, it is identified that the accuracy is improved and the numerical dispersion can be occured.
- When the 2nd order scheme in time and space are applied together, the numerical dispersion is more severe and the lowest Courant number is indicated.

Conclusions

- In terms of the accuracy of the code, the 2nd order spatial scheme is more influenced than the 2nd order temporal scheme.
- The 2nd order spatial scheme is more rigid than the 2nd order temporal scheme due to low maximum Courant number.
- In the 2nd order spatial scheme, the numerical dispersion can be occurred.

Further works

Further works

- For improving the applicability of the higher order scheme in thermal hydraulic system analysis code, various higher order numerical schemes are needed to evaluate numerical accuracy and efficiency.
 - ✓ 2nd order Lax-Wendroff method, QUICK scheme etc..
- For increasing the stability of the higher order scheme, the flux limiters will be applied and evaluate performance and applicability.
 - ✓ MUSCL, Van Leer, OSPRE, Van Albada etc..
- Finally, the optimum higher order numerical scheme will be evaluated and the application methodology will be developed.

THANK YOU FOR YOUR ATTENTION!

Appendix

Spatial Discretization schemes

Upwind scheme (Donor cell scheme) – 1st order

- ✓ In steady state,

$$F_e \phi_e - F_w \phi_w = D_e (\phi_E - \phi_P) - D_w (\phi_P - \phi_W)$$
$$F = \rho u A \qquad D = \frac{\Gamma A}{\delta x}$$

Rearranging equation,

 $a_P\phi_P=a_W\phi_W+a_E\phi_E$

For positive flow direction

 $a_w = D_w + F_w$ $a_E = D_e$

 $a_P = a_W + a_E + (F_e - F_w)$

- Widely applied in early CFD calculations due to simplicity, high stability
- ✓ Numerical diffusion problem
- Other 1st order scheme Power law scheme, Hybrid scheme etc.

✓ For negative flow direction $a_P = a_W + a_E + (F_e - F_w)$

$$a_w = D_w \qquad a_E = D_e - F_e$$

convergence, 1993

Korea Advanced Institute of Science and Technology

Appendix

- Spatial Discretization schemes
 - Upwind scheme (Donor cell scheme) 2nd order

The value at a cell face is determined depending on the flow direction

✓ Implemented in ANSYS FLUENT 12.0, CFX, Star CCM+ etc.

Source : H.K. Versteeg, et al., *An introduction to computational fluid dynamics*, 1995

✓ Numerical dispersion problem

Other higher order scheme – QUICK shceme, Lax-Wendroff scheme, 3rd order MUSCL scheme etc.

Source : Ling Zou et al., *Applications of high-resolution spatial discretization scheme and Jacobian-free Newton-Krylov method in two=phase flow problems*, 2015

Appendix

Time Discretization schemes

Backward Euler scheme – 1st order

✓ Stable implicit time integration method

$$\frac{\partial u(x,t)}{\partial t} + a \frac{\partial u(x,t)}{\partial x} = 0$$
$$\left(\frac{\partial u(x,t)}{\partial t}\right)_{n+1} = \frac{u_i^{n+1} - u_i^n}{\Delta t} + \frac{\Delta t}{2} \left(\frac{\partial^2 u}{\partial t^2}\right)_{n+1} + O(\Delta t^2)$$

Backward Euler scheme – semi-implicit

✓ To produce an approximate discrete solution by iterating

$$v_{n+1} = v_n + g(t_n, x_n)\Delta t$$

 $x_{n+1} = x_n + f(t_n, v_{n+1})\Delta t$

 Convective terms in the mass and energy equations, pressure gradient term in the momentum equation, and the compressible work term in the energy equation evaluated at the new time level

Backward Euler scheme – 2nd order

✓ Implemented in RELAP7

$$\left(\frac{\partial u(x,t)}{\partial t}\right)_{n+1} = \frac{3u_i^{n+1} - 4u_i^n + u_i^{n-1}}{2\Delta t} + O(\Delta t^2)$$

Appendix – NTS code

> NPNP Transient System code

- ✓ Identical solver to MARS code (Semi-implicit)
- Single phase governing equations
- Option 1st order in temporal and spatial
 1st order in temporal and 2nd order in spatial
 2nd order in temporal and 1st order in spatial
 2nd order in temporal and 2nd order in temporal
- Dittus-Boelter correlation for heat transfer coefficient in single phase

$$HTC = 0.023 \frac{k_{\nu}}{D_{H}} (\frac{G_{\nu} D_{H}}{\mu_{\nu}})^{0.8} (\text{Pr}_{\nu})^{0.4}$$

 Friction factor model (Colebrook-White correlation for turbulent friction factor)

$$\begin{split} \lambda_{\rm L} &= \frac{64}{{\rm Re}\Phi_{\rm g}}, \quad 0 \leq {\rm Re} \leq 2200 \\ \lambda_{\rm L,\,T} &= \left(3.75 - \frac{8250}{{\rm Re}}\right) (\lambda_{\rm T,\,8000} - \lambda_{\rm L,\,2200}) + \lambda_{\rm L,\,2200} \quad \mbox{ for } 2200 < {\rm Re} < 3000 \\ \frac{1}{\sqrt{\lambda_{\rm T}}} &= -2\log_{10} \bigg\{ \frac{\epsilon}{3.7{\rm D}} + \frac{2.51}{{\rm Re}} \Big[1.14 - 2\log_{10} \Big(\frac{\epsilon}{{\rm D}} - \frac{21.25}{{\rm Re}^{0.9}} \Big) \Big] \bigg\} \end{split}$$

Appendix – NTS governing equations

> NPNP Transient System code – Hydrodynamic solver

- 1st-order accuracy difference & Semi-implicit scheme in single phase governing equation
 - Convective term in the mass and energy equation
 - Pressure gradient term in the momentum equation
 - Compressible work term in the energy equation
- Governing equations Two phase, Two field model
 - ✓ Mass Continuity

$$\frac{\partial}{\partial t}(\alpha_{f}\rho_{f}) + \frac{1}{A}\frac{\partial}{\partial x}(\alpha_{f}\rho_{f}v_{f}A) = \mathbf{V}_{f}$$

$$\frac{\partial}{\partial t}(\alpha_{g}\rho_{g}) + \frac{1}{\underline{A}\partial x}(\alpha_{g}\rho_{g}\nabla_{g}A) = \underline{\Gamma}_{g}$$

$$\alpha_{f}\rho_{f}A\frac{\partial v_{f}}{\partial t} + \frac{1}{2}\alpha_{f}\rho_{f}A\frac{\partial v_{f}^{2}}{\partial x} = -\alpha_{f}A\frac{\partial P}{\partial x} + \alpha_{f}\rho_{f}B_{x}A - (\alpha_{f}\rho_{f}A)FWF(v_{f})$$

$$\alpha_{g}\rho_{g}A\frac{\partial v_{g}}{\partial t} + \frac{1}{2}\alpha_{g}\rho_{g}A\frac{\partial v_{g}^{2}}{\partial x} = -\alpha_{g}A\frac{\partial P}{\partial x} + \alpha_{g}\rho_{g}B_{x}A - (\alpha_{g}\rho_{g}A)FWG(v_{g})$$

$$(-)\Gamma_{g}A(v_{fI} - v_{f}) - (\alpha_{f}\rho_{f}A)FIF(v_{f} - v_{g})$$

$$+ \Gamma_{g}A(v_{gI} - v_{g}) - (\alpha_{g}\rho_{g}A)FIG(v_{g} - v_{f})$$

$$+ \Gamma_{g}A(v_{gI} - v_{g}) - (\alpha_{g}\rho_{g}A)FIG(v_{g} - v_{f})$$

$$-C\alpha_{f}\alpha_{g}\rho_{m}A\left[\frac{\partial(v_{f} - v_{g})}{\partial t} + v_{g}\frac{\partial v_{f}}{\partial x} - v_{f}\frac{\partial v_{g}}{\partial x}\right]$$

$$-C\alpha_{g}\alpha_{f}\rho_{m}A\left[\frac{\partial(v_{g} - v_{f})}{\partial t} + v_{f}\frac{\partial v_{g}}{\partial x} - v_{g}\frac{\partial v_{f}}{\partial x}\right]$$

✓ Energy Conservation

$$\frac{\partial}{\partial t}(\alpha_{f}\rho_{f}U_{f}) + \frac{1}{\underline{A}\partial x}(\alpha_{f}\rho_{f}U_{f}v_{f}A) = -P\frac{\partial\alpha_{f}}{\partial t} - \frac{P}{\underline{A}\partial x}(\alpha_{f}v_{f}A) + Q_{wf} + Q_{if} = P_{ig}h_{f}^{*} - \Gamma_{w}h_{f}^{'} + DISS_{f}$$

$$\frac{\partial}{\partial t}(\alpha_{g}\rho_{g}U_{g}) + \frac{1}{A}\frac{\partial}{\partial x}(\alpha_{g}\rho_{g}U_{g}V_{g}A) = -P\frac{\partial\alpha_{g}}{\partial t} - \frac{P}{A}\frac{\partial}{\partial x}(\alpha_{g}V_{g}A) + Q_{wg} + Q_{ig} + \Gamma_{ig}h_{g}^{*} + \Gamma_{w}h_{g} + DISS_{g}$$

Appendix – NTS Hydrodynamic solver

> NPNP Transient System code – Hydrodynamic solver

Momentum Conservation

 \checkmark

State relations

$$\alpha_{i}\rho_{i}A\frac{\partial v_{i}}{\partial t} + \frac{1}{2}\alpha_{i}\rho_{i}A\frac{\partial v_{i}}{\partial x}^{2} = -\alpha_{i}A\frac{\partial p}{\partial x} + \alpha_{i}\rho_{i}B_{a}A - (\alpha_{i}\rho_{i}A)FWF(v_{i})$$

$$(-)\Gamma_{a}A(v_{i}-v_{i}) + (-\alpha_{i}\rho_{i}A)FWF(v_{i})$$

$$(-)\Gamma_{a}A(v_{i}-v_{i}) + (-\alpha_{i}\rho_{i}A)FWF(v_{i}-v_{i})$$

$$(-)\Gamma_{a}A(v_{i}-v_{i}A)FWF(v_{i}-v_{i})$$

$$(-)\Gamma_{a}A(v_{i}-v_{i}A)FWF(v_{i}-v_{i})$$

$$(-)\Gamma_{a}A(v_{i}-v_{i}A)FWF(v_{i}-v_{i}A)FWF(v_{i}-v_{i}A)FWF(v_{i}-v_{i}A)$$

$$(-)\Gamma_{a}A(v_{i}-v_{i}A)FWF(v_{i}A)FWF(v_{i}A)FWF(v_{i}A)FWF(v_{i}A)FWF(v_{i}A)FWF$$

$$\frac{\partial}{\partial t}(\alpha_{f}\rho_{f}U_{f}) + \frac{1}{\underline{A\partial x}}(\alpha_{f}\rho_{f}U_{f}V_{f}A) = -P\frac{\partial\alpha_{f}}{\partial t} - \frac{P}{\underline{A\partial x}}(\alpha_{f}v_{f}A) + Q_{wf} + D_{i}S_{f}$$

$$X\left(\frac{\partial\rho}{\partial P}\right)\delta P_{i+\frac{1}{2}} + Y\left(\frac{\partial\rho}{\partial T}\right)\delta T_{i+\frac{1}{2}} = D + E\left(\delta P_{i+\frac{3}{2}} - \delta P_{i+\frac{1}{2}}\right) + F\left(\delta P_{i+\frac{1}{2}} - \delta P_{i-\frac{1}{2}}\right)$$

Appendix – NTS Hydrodynamic solv

> NPNP Transient System code – Hydrodynamic solver

Pressure difference matrix

$$\bar{A} \begin{pmatrix} \delta P \\ \delta T \end{pmatrix} = \bar{D} + \bar{E} \left(\delta P_{i+\frac{3}{2}} - \delta P_{i+\frac{1}{2}} \right) - \bar{F} \left(\delta P_{i+\frac{1}{2}} - \delta P_{i-\frac{1}{2}} \right)$$

 Multiplying above matrix by A^{-1} results in a single equation involving pressures.

$$\begin{split} &-\bar{A}^{-1}\bar{F}\delta P_{i-\frac{1}{2}} + (1+\bar{A}^{-1}\bar{E}+\bar{A}^{-1}\bar{F})\delta P_{i+\frac{1}{2}} - \bar{A}^{-1}\bar{E}\delta P_{i+\frac{3}{2}} = \bar{A}^{-1}\bar{D}\\ &\delta T_{i+\frac{1}{2}} = \bar{A}^{-1}\bar{D} + \bar{A}^{-1}\bar{E}\left(\delta P_{i+\frac{3}{2}} - \delta P_{i+\frac{1}{2}}\right) - \bar{A}^{-1}\bar{F}\left(\delta P_{i+\frac{1}{2}} - \delta P_{i-\frac{1}{2}}\right) \end{split}$$

- ✓ N X N sparse matrix in a system containing N volumes
- Pressure difference of each volume is substituted into eq.(2) and the velocity equations.

Appendix – NTS Heat structure solver

> NPNP Transient System code – Heat structure solver

Heat Conduction

$$\iiint_{\mathbb{V}} \rho(T,\overline{x}) \frac{\partial T}{\partial t}(\overline{x},t) d\mathbb{V} = \iint_{\mathbb{S}} k(T,\overline{x}) \overline{\mathbb{V}} T(\overline{x},t) \bullet d\overline{s} + \iiint_{\mathbb{V}} S(\overline{x},t) d\mathbb{V}$$

$$\rho \frac{T_i^{n+1} - T_i^n}{\Delta t} = k \frac{r_{i+\frac{1}{2}} \left(\frac{T_{i+1} - T_i}{\Delta r}\right) - r_{i-\frac{1}{2}} \left(\frac{T_i - T_{i-1}}{\Delta r}\right)}{r_i \Delta r} + S$$
$$= \xi_i$$

✓ Crank-Nicholson method (w =
$$\frac{1}{2}$$
)

