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Background 

 Reactor system analysis codes 

 MARS-KS, RELAP5, COBRA-TF, TRACE and SPACE codes.. 
 has been developed for the realistic & best-estimate thermal-hydraulic analysis of nuclear 

reactor system. 
 Assessment tool for the safety and conservativeness of the nuclear system 
 Semi-implicit method for the time integration scheme 
 First order numerical methods in both space and time discretization  

 Donor cell scheme (1st order Upwind scheme) 
 Widely applied in CFD calculations due to simplicity, high stability 

 
 However, 1st order numerical scheme can lead to excessive numerical diffusion! 

 Numerical diffusion problem 

 Severe problem in the 1st order numerical scheme 
 Make the gradients to be smooth in the regions where 

the gradients should be steep 
 Therefore, the accuracy of code can be deteriorated. 

Numerical diffusion problem 
Source : H.K. Cho, et al., 
Implementation of a second-order 
upwind method in a semi-implicit two-
phase flow code on unstructured 
meshes, 2010 

 Higher order schemes 

 FLUENT, Star-CCM+, CFX etc. 
 QUICK scheme, Lax-Wendroff scheme, High resolution 

scheme etc. 
 The Taylor series truncation error is decreased because 

of higher order of error terms 
 Numerical diffusion errors can be minimized 



Background 

 Next generation nuclear system safety analysis code 

 RELAP7 
 INL(Idaho National Lab.)  
 2nd order accurate temporal and spatial discretization 
 fully implicit method & fully coupled method 

• PCICE-FEM scheme 
• JFNK method 
• Point implicit method 

 TRACE 
 Oak Ridge National Lab. 
 Centeral difference scheme, 2nd order upwind scheme 
 Non-linear flux limiters – MUSCL, Van Leer, Van Albada etc.. 

 COBRA-TF 
 Univ. Massachusetts Lowell & Oak Ridge National Lab. 
 2nd order Lax-Wendroff scheme 
 Non-linear flux limiter – Van Albada 

 

RELAP7 Time line 
Source : Hongbin Zhang et al., RELAP7 
Code Development Status Update and 
Future Plan, 2013 

Results comparison of 1st order 
scheme and 2nd order scheme in 
COBRA-TF 
Source : Hongbin Zhang et al., RELAP7 
Code Development Status Update and 
Future Plan, 2013 



Objective & Plan 

 Research Objective 

 To see the applicapability of higher-order numerical scheme in the nuclear system safety 

analysis code. 

 To evaluate numerical accuracy of higher-order numerical schemes. 

 To identify the change of stability of higher-order numerical schemes. 

 Research Plan 

 Separate single phase transient analysis code which is possible to calculate in 1st order and 

2nd order scheme is built in MATLAB 

 It is impossible to implement directly 2nd order scheme in MARS-KS which is 

reference code for this study. 

 In this study, all of test cases is limited in single phase to see only the effect of 1st 

order and 2nd order scheme. 

 By modeling the simple pipe flow, numerical accuracy and stability of higher-order 

numerical schemes are evaluated. 

 By using 2nd norm, the numerical accuracy is compared as increasing the mesh size 

and higher-order schemes. 

 The maximum Courant number is compared to identify the change of stability. 



Numerical Test 

 Single phase pipe flow with sine pulse of temperature 

 Description 

 Sensitivity test depending on the higher-order schemes and mesh number 

 1st order in temporal and spatial (1T1S) 

 1st order in temporal and 2nd order in spatial (1T2S) 

 2nd order in temporal and 1st order in spatial (2T1S) 

 2nd order in temporal and 2nd order in temporal (2T2S) 

 

 mesh number : 20 / 40 / 80 
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Numerical Results 
 Single phase pipe flow with sine pulse of temperature 

 Pulse width = 5sec & Interval = 1.5sec 
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(a) MARS vs 1T1S 



Numerical Results 
 Single phase pipe flow with sine pulse of temperature 

 Pulse width = 5sec & Interval = 1.5sec 
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(b) Higher order sensitivity in mesh 20 



Numerical Results 
 Single phase pipe flow with sine pulse of temperature 

 Pulse width = 5sec & Interval = 1.5sec 
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(c) Higher order sensitivity in mesh 40 (d) Higher order sensitivity in mesh 80 



Numerical Results 
 Single phase pipe flow with sine pulse of temperature 

 Pulse width = 6sec & Interval = 0sec 
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Numerical Results 
 Single phase pipe flow with sine pulse of temperature 

 Pulse width = 6sec & Interval = 0sec 
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(b) Higher order sensitivity in mesh 20 



Numerical Results 
 Single phase pipe flow with sine pulse of temperature 

 Pulse width = 6sec & Interval = 0sec 
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(c) Higher order sensitivity in mesh 40 (d) Higher order sensitivity in mesh 80 
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Numerical Results 

 Single phase pipe flow with sine pulse of temperature 

 (a) Error comparison of 1st order scheme in space (b) Error comparison of 2nd order scheme in space 

1T1S 1T2S 2T1S 2T2S 

Mesh 20 1.0 0.27 0.75 0.14 

Mesh 40 1.0224 0.27 0.6498 0.136 

Mesh 80 1.0147 0.248 0.632 0.124 

Average 1.0124 0.2627 0.6773 0.1333 

1T1S 1T2S 2T1S 2T2S 

Mesh 20 0.9988 0.2628 0.7687 0.1349 

Mesh 40 0.9997 0.2499 0.6398 0.124 

Mesh 80 0.9999 0.26 0.6119 0.128 

Average 0.9995 0.2576 0.6735 0.129 

Table.1 Maximum Courant number of NTS codes 
in case of pulse width 5sec and interval 1.5sec 

Table.2 Maximum Courant number of NTS codes 
in case of pulse width 6sec and interval 0sec 



Summary 
 Summary 

 The 2nd order upwind scheme and 2nd order backward Euler scheme are implemented for the 

spatial and temporal scheme. 

 In the 1st order scheme, the temperature distribution is severely distorted due to the numerical 

diffusion. 

 When the only 2nd order sheme in time are applied, the results are not much different from the 

1st order scheme in both time and space. 

 In the 2nd order spatial scheme, it is identified that the accuracy is improved and the numerical 

dispersion can be occured.  

 When the 2nd order scheme in time and space are applied together, the numerical dispersion is 

more severe and the lowest Courant number is indicated.  

 Conclusions 

 In terms of the accuracy of the code, the 2nd order spatial scheme is more influenced than the 

2nd order temporal scheme. 

 The 2nd order spatial scheme is more rigid than the 2nd order temporal scheme due to low 

maximum Courant number. 

 In the 2nd order spatial scheme, the numerical dispersion can be occurred. 



Further works 

 Further works 

 

 For improving the applicability of the higher order scheme in thermal hydraulic system analysis 

code, various higher order numerical schemes are needed to evaluate numerical accuracy and 

efficiency. 

 2nd order Lax-Wendroff method, QUICK scheme etc.. 

 

 For increasing the stability of the higher order scheme, the flux limiters will be applied and 

evaluate performance and applicability. 

 MUSCL, Van Leer, OSPRE, Van Albada etc.. 

 

 Finally, the optimum higher order numerical scheme will be evaluated and the application 
methodology will be developed. 
 



THANK YOU FOR YOUR 
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Appendix 

 Spatial Discretization schemes 

 Upwind scheme (Donor cell scheme) – 1st order 

 The value at a cell face is determined depending on the flow direction 

 

 Widely applied in early CFD calculations 

due to simplicity, high stability 

 Numerical diffusion problem 

 Other 1st order scheme – Power law scheme, 

Hybrid scheme etc.  

 
Source : J.H. Mahaffy et al., Numerics 
of codes: stability, diffusion, and 
convergence, 1993 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+ 𝑎

𝜕𝑢 𝑥, 𝑡

𝜕𝑥
= 0 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
+ 𝑎

𝑢𝑖
𝑛 − 𝑢𝑖−1

𝑛

∆𝑥
= 0   𝑓𝑜𝑟 𝑎 > 0 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
+ 𝑎

𝑢𝑖+1
𝑛 − 𝑢𝑖

𝑛

∆𝑥
= 0   𝑓𝑜𝑟 𝑎 < 0 

𝜕

𝜕𝑡
𝜌𝜙 + 𝛻 𝜌𝑢𝜙 = 𝛻 Γ𝑔𝑟𝑎𝑑𝜙 + 𝑆 

𝐹𝑒𝜙𝑒 − 𝐹𝑤𝜙𝑤 = 𝐷𝑒 𝜙𝐸 − 𝜙𝑃 − 𝐷𝑤(𝜙𝑃 − 𝜙𝑊) 

𝐹 = 𝜌𝑢𝐴 𝐷 =
Γ𝐴

𝛿𝑥
 

𝑎𝑃𝜙𝑃 = 𝑎𝑊𝜙𝑊 + 𝑎𝐸𝜙𝐸 

𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 + (𝐹𝑒 − 𝐹𝑤) 

𝑎𝑤 = 𝐷𝑤 𝑎𝐸 = 𝐷𝑒 − 𝐹𝑒 

 In steady state, 

 Rearranging equation, 

𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 + (𝐹𝑒 − 𝐹𝑤) 

𝑎𝑤 = 𝐷𝑤 + 𝐹𝑤 𝑎𝐸 = 𝐷𝑒 

 For positive flow direction  For negative flow direction 



Appendix 

 Spatial Discretization schemes 

 Upwind scheme (Donor cell scheme) – 2nd order 

 The value at a cell face is determined depending on the flow direction 

 

 Implemented in ANSYS FLUENT 12.0, CFX, Star CCM+ etc.  

 Numerical dispersion problem 

 Other higher order scheme – QUICK shceme, Lax-Wendroff scheme, 3rd order MUSCL scheme etc.  

 

Source : H.K. Versteeg, et al., An 
introduction to computational fluid 
dynamics, 1995 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+ 𝑎

𝜕𝑢 𝑥, 𝑡

𝜕𝑥
= 0 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
+ 𝑎

3𝑢𝑖
𝑛 − 4𝑢𝑖−1

𝑛 + 𝑢𝑖−2
𝑛

2∆𝑥
= 0   𝑓𝑜𝑟 𝑎 > 0 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
+ 𝑎

−𝑢𝑖+2
𝑛 + 4𝑢𝑖+1

𝑛 − 3𝑢𝑖
𝑛

2∆𝑥
= 0   𝑓𝑜𝑟 𝑎 < 0 

Source : Ling Zou et al., Applications of 
high-resolution spatial discretization 
scheme and Jacobian-free Newton-
Krylov method in two=phase flow 
problems, 2015 



Appendix 

 Time Discretization schemes 

 Backward Euler scheme – 1st order 

 Stable implicit time integration method 

 𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+ 𝑎

𝜕𝑢 𝑥, 𝑡

𝜕𝑥
= 0 

𝜕𝑢 𝑥, 𝑡

𝜕𝑡
𝑛+1

=
𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
+
∆𝑡

2

𝜕2𝑢

𝜕𝑡2
𝑛+1

+ 𝑂(∆𝑡2) 

 Backward Euler scheme – semi-implicit 

 To produce an approximate discrete solution by iterating 

 Backward Euler scheme – 2nd order 

𝜕𝑢 𝑥, 𝑡

𝜕𝑡
𝑛+1

=
3𝑢𝑖

𝑛+1 − 4𝑢𝑖
𝑛 + 𝑢𝑖

𝑛−1

2∆𝑡
+ 𝑂(∆𝑡2) 

𝑣𝑛+1 = 𝑣𝑛 + 𝑔(𝑡𝑛, 𝑥𝑛)∆𝑡 

𝑥𝑛+1 = 𝑥𝑛 + 𝑓(𝑡𝑛, 𝑣𝑛+1)∆𝑡 

 Convective terms in the mass and energy equations, pressure gradient term in the 

momentum equation, and the compressible work term in the energy equation evaluated at 

the new time level 

 Implemented in RELAP7 



Appendix – NTS code 

 NPNP Transient System code 

 Identical solver to MARS code (Semi-implicit) 

 Single phase governing equations 

 Option – 1st order in temporal and spatial 

 1st order in temporal and 2nd order in spatial 

 2nd order in temporal and 1st order in spatial 

 2nd order in temporal and 2nd order in temporal 

 Dittus-Boelter correlation for heat transfer coefficient in 

single phase 

 

 

 Friction factor model (Colebrook-White correlation for 

turbulent friction factor) 

 

 

 

 

 

 

 Properties from NIST data base 

 

 

< Code Algorithm > 



Appendix – NTS governing equations 

 NPNP Transient System code – Hydrodynamic solver 

 1st-order accuracy difference & Semi-implicit scheme in single phase governing equation 

 Convective term in the mass and energy equation 
 Pressure gradient term in the momentum equation 
 Compressible work term in the energy equation 

 

 Governing equations – Two phase, Two field model 

 Mass Continuity 

 

 Momentum Conservation 

 Energy Conservation 



Appendix – NTS Hydrodynamic solver 

 NPNP Transient System code – Hydrodynamic solver 

 
 Momentum Conservation 

𝛼𝑓𝜌𝑓
𝑉𝑓,𝑖
𝑛+1 − 𝑉𝑓,𝑖

𝑛

Δ𝑡
+
1

2
𝛼𝑓𝜌𝑓

𝑉
𝑓,𝑖+

1
2

2 𝑛 − 𝑉
𝑓,𝑖−

1
2

2 𝑛

Δ𝑥
= −𝛼𝑓𝐴

𝑃
𝑖+
1
2

𝑛+1 − 𝑃
𝑖−
1
2

𝑛+1

Δ𝑥
− 𝛼𝑓

𝑛𝜌𝑓
𝑛𝐴 𝐹𝑊𝐹𝑛 𝑉𝑓,𝑖

𝑛+1 + 𝐶 𝑉𝑓,𝑖
𝑛+1 = 𝑓(𝑃

𝑖+
1
2

𝑛+1) 

𝛼𝑓𝑉𝑖+1
2

𝜌
𝑓,𝑖+

1
2

𝑛+1 −𝜌
𝑓,𝑖+

1
2

𝑛

Δ𝑡
+ 𝛼𝑓𝜌𝑓,𝑖+1 𝐴𝑖+1𝑉𝑓,𝑖+1

𝑛+1 − 𝛼𝑓𝜌𝑓,𝑖 𝐴𝑖𝑉𝑓,𝑖
𝑛+1=0 

 Mass Continuity  

𝜌𝑛+1 = 𝜌𝑛 +
𝜕𝜌

𝜕𝑃
𝛿𝑃 +

𝜕𝜌

𝜕𝑇
𝛿𝑇 

𝑈𝑛+1 = 𝑈𝑛 +
𝜕𝑈

𝜕𝑃
𝛿𝑃 +

𝜕𝑈

𝜕𝑇
𝛿𝑇 

𝛼𝑓𝑉𝑖+1
2

𝜕𝜌

𝜕𝑃
𝛿𝑃

𝑖+
1
2
+ 𝛼𝑓𝑉𝑖+1

2

𝜕𝜌

𝜕𝑇
𝛿𝑇

𝑖+
1
2
= 𝐷 + 𝐸 𝛿𝑃

𝑖+
3
2
− 𝛿𝑃

𝑖+
1
2
+ 𝐹 𝛿𝑃

𝑖+
1
2
− 𝛿𝑃

𝑖−
1
2

 

 

 Energy Conservation 

𝑋
𝜕𝜌

𝜕𝑃
𝛿𝑃

𝑖+
1
2
+ 𝑌

𝜕𝜌

𝜕𝑇
𝛿𝑇

𝑖+
1
2
= 𝐷 + 𝐸 𝛿𝑃

𝑖+
3
2
− 𝛿𝑃

𝑖+
1
2
+ 𝐹 𝛿𝑃

𝑖+
1
2
− 𝛿𝑃

𝑖−
1
2

 

 

 State relations 



Appendix – NTS Hydrodynamic solver 

 NPNP Transient System code – Hydrodynamic solver 

 Pressure difference matrix 

𝐴 
𝛿𝑃
𝛿𝑇

= 𝐷 + 𝐸 𝛿𝑃
𝑖+
3
2
− 𝛿𝑃

𝑖+
1
2
− 𝐹 𝛿𝑃

𝑖+
1
2
− 𝛿𝑃

𝑖−
1
2

 

 Multiplying above matrix by 𝐴−1 results in a single equation 

involving pressures.  

 −𝐴 −1𝐹 𝛿𝑃
𝑖−
1
2
+ 1 + 𝐴 −1𝐸 + 𝐴 −1𝐹 𝛿𝑃

𝑖+
1
2
− 𝐴 −1𝐸 𝛿𝑃

𝑖+
3
2
= 𝐴 −1𝐷  

 N X N sparse matrix in a system containing N volumes 

 Pressure difference of each volume is substituted into eq.(2) 

and the velocity equations. 

𝛿𝑇
𝑖+
1
2
= 𝐴 −1𝐷 + 𝐴 −1𝐸 𝛿𝑃

𝑖+
3
2
− 𝛿𝑃

𝑖+
1
2
− 𝐴 −1𝐹 𝛿𝑃

𝑖+
1
2
− 𝛿𝑃

𝑖−
1
2

 

(1) 

(2) 

1 + 𝐴 −1𝐸 + 𝐴 −1𝐹  −𝐴 −1𝐸  0 0 −𝐴 −1𝐹  

−𝐴 −1𝐹  
 

1 + 𝐴 −1𝐸 + 𝐴 −1𝐹  −𝐴 −1𝐸  0 0 

0 
−𝐴 −1𝐹  

 
1 + 𝐴 −1𝐸 + 𝐴 −1𝐹  −𝐴 −1𝐸  0 

… 

−𝐴 −1𝐸  0 0 0 1 + 𝐴 −1𝐸 + 𝐴 −1𝐹  

= 𝐴 −1𝐷  

𝛿𝑃
𝑖+
1
2
 

𝛿𝑃
𝑖+
1
2
 

𝛿𝑃
𝑖+
1
2
 

… 

𝛿𝑃
𝑖+
1
2
 

< Code Algorithm > 



Appendix – NTS Heat structure solver 

 NPNP Transient System code – Heat structure solver 

 Heat Conduction 

𝜌
𝑇𝑖
𝑛+1 − 𝑇𝑖

𝑛

Δ𝑡
= 𝑘

𝑟
𝑖+
1
2

𝑇𝑖+1 − 𝑇𝑖
Δ𝑟 − 𝑟

𝑖−
1
2

𝑇𝑖 − 𝑇𝑖−1
Δ𝑟

𝑟𝑖Δ𝑟
+ 𝑆 

 =𝜉𝑖 

 In cylindrical coordinate 

 Crank-Nicholson method (w = ½) 

𝜌
𝑇𝑖
𝑛+1 − 𝑇𝑖

𝑛

Δ𝑡
= 𝑤𝜉𝑖

𝑛+1 + (1 − 𝑤)𝜉𝑖
𝑛 

𝑎𝑖
𝑛𝑇𝑖−1

𝑛+1 + 𝑏𝑖
𝑛𝑇𝑖

𝑛+1+𝑐𝑖
𝑛𝑇𝑖+1

𝑛+1 = 𝑑𝑖  

𝑎𝑖
𝑛 = −𝑤

𝑘Δ𝑡𝑟
𝑖−
1
2

Δ𝑟
𝑖−
1
2

 𝑏𝑖
𝑛 = 𝜌Δ𝑟𝑟𝑖 + 𝑎𝑖

𝑛 + 𝑐𝑖
𝑛 𝑐𝑖

𝑛 = −𝑤

𝑘Δ𝑡𝑟
𝑖+
1
2

Δ𝑟
𝑖+
1
2

 

𝑏𝑖
𝑛 = 𝑎𝑖

𝑛𝑇𝑖−1
𝑛 + 𝑏𝑖

𝑛𝑇𝑖
𝑛+𝑐𝑖

𝑛𝑇𝑖+1
𝑛 +𝑤𝑆𝑛+1𝑟𝑖Δ𝑟Δ𝑡 + 1 − 𝑤 𝑆𝑛𝑟𝑖Δ𝑟Δ𝑡 

𝑏𝑖
𝑛 𝑐𝑖

𝑛 0 0 𝑎𝑖
𝑛 

𝑎𝑖
𝑛 
 

𝑏𝑖
𝑛 𝑐𝑖

𝑛 0 0 

0 
𝑎𝑖
𝑛 
 

𝑏𝑖
𝑛 𝑐𝑖

𝑛 0 

… 

𝑐𝑖
𝑛 0 0 𝑎𝑖

𝑛 𝑏𝑖
𝑛 

N X N sparse matrix 

= di 

𝑇𝑖
𝑛+1 

𝑇𝑖
𝑛+1 

𝑇𝑖
𝑛+1 

… 

𝑇𝑖
𝑛+1 


