A Conceptual Study of Using an Isothermal Compressor on S-CO₂ Cooled KAIST Micro Modular Reactor (KAIST-MMR)

2016 Korean Nuclear Society Spring Meeting

Jin Young Heo

Background – KAIST MMR

Fig. 1 – Component schematic of KAIST MMR [1]

Fig. 2 – Overview schematic of KAIST MMR [1]

Descriptions:

- Small Modular Reactor (SMR) concept
- 12MWe produced from 36MWt nuclear core
- Reactor cooled by supercritical carbon dioxide (S-CO₂)
- Adopts the S-CO₂ Brayton cycle as power conversion system

Background – S-CO₂ cycle

Fig. 3 – Supercritical CO₂ cycle T-s diagram [2]

Supercritical CO₂ Cycle:

- New technology to replace conventional steam Rankine cycle
- Working fluid: S-CO₂ (single phase)
- Liquid-like low compressibility factor near critical point

5

Background – S-CO₂ cycle

Advantages	Limitations
-Smaller size turbomachines -Single-phase system -Better efficiency	 -Low pressure ratio (higher mass flow rate → pressure losses 1) -Recuperator with large surface area (larger HX)

6

Background – MMR Layout

Fig. 6 – Schematic figure of simple recuperated S-CO₂ Brayton cycle [1]

Research objectives:

Descriptions

- Reference cycle: simple recuperated Brayton cycle
- Turbine inlet T: 550°C, Compressor inlet T: 60°C
- Net cycle efficiency η_{net} =32.5%
- New layout suggested to reduce hardware sizing, and improve cycle efficiency
- 1. Further increase cycle net efficiency through design modifications
- 2. Reduce the total sizing of the power cycle system

Background – isothermal compression

Fig. 7 - Types of compression processes on P-v diagram [4]

Fig. 8 - Compressor technology options on P-h diagram [5]

Descriptions:

- Minimum compression work
- In reality, perfect isothermal compression is impossible
- Various ways to realize "near" isothermal compression process, by removing heat of compression during compression process

Background – isothermal compressor

Fig. 9,10 – Concepts of isothermal compressor for compressing CO₂ [5]

Isothermal compressor technology:

- Previous researches mainly done for carbon capture applications
- MAN Turbo, SwRI are pursuing further development
- But, has not been applied to S-CO₂ cycles

→ In this study, the potential of using isothermal compressor technology to $S-CO_2$ power cycle is studied

Definition – isothermal compressor

2-Staged Approach

- Simplifies the problem as two-stage, cooling and adiabatic compression
- Conventional frame of compressor efficiency
- Inflexible to changes in layout and operating conditions

Infinitesimal Approach

- Requires hardware design parameters including the number of intercooling stages and polytropic coefficients
- Mathematically complex for calculation
- Flexible under various conditions

Definition – isothermal compressor

Infinitesimal Approach

Descriptions:

- Isentropic compression (red)
 + cooling (blue)
- Total real work = $\sum_{m} w_{x,i}$ (*m:* number of intermediate stages, $w_{x,i}$: work of isentropic compressions)
- Under ideal gas assumptions, infinitesimal approach converges to ideal isothermal compression

Optimal pressure ratio of multistage compression + cooling process:

 $P_{ratio} = \frac{P_{out}}{P_{in}} = \frac{P_{x1}}{P_{in}} \frac{P_{x2}}{P_{x1}} \cdots \frac{P_{x,m}}{P_{x,m-1}} , \qquad P_{ratio,inf} = (P_{ratio})^{\frac{1}{m}}$

Isentropic efficiency of isothermal compression (infinitesimal approach)

 $\eta_{iso-c} = \frac{ideal \ work}{actual \ work} = \frac{isentropic \ multistage \ compression \ work}{actual \ multistage \ compression \ work}$

Analysis - Conditions

Fig. 13 – Schematic figure of simple recuperated S-CO₂ Brayton cycle

Fig. 14 – Schematic figure of S-CO₂ iso-Brayton cycle

Design Parameters	Values
Q (MWth)	36.2
Turbine inlet temperature (°C)	550
Compressor outlet pressure (MPa)	20
Compressor inlet temperature (°C)	60
Pressure ratio	2.59
Turbine efficiency (%)	92.3
Compressor efficiency (%)	85.0
(Isentropic compression stage efficiency)	
Recuperator effectiveness (%)	94.6

Table 1 - Representative design parameters for KAIST-MMR cycle analysis

Fig. 14b - Diagram of isentropic compression stage efficiency

16

Analysis – Simple Recuperated

Fig. 15 – Schematic figure of simple recuperated S-CO₂ Brayton cycle

Fig. 16 – T-s diagram of simple recuperated S-CO₂ Brayton cycle under KAIST-MMR conditions

Cycle Performance Parameters	Values
Cycle Net Efficiency (%)	32.5
Compressor Work (MW)	10.2
Cycle Net Work (MW)	11.8
CO ₂ mass flow (kg/s)	175.69

Table 2 - Cycle performance results of simple recuperated S-CO₂ Brayton cycle under KAIST-MMR conditions

Analysis – Infinitesimal iso-Brayton

Fig. 17 – Cycle layout of iso-Brayton cycle in infinitesimal approach

Fig. 18 – T-s diagram of iso-Brayton cycle in infinitesimal approach under KAIST-MMR conditions

Cycle Performance Parameters	Values
Cycle Net Efficiency (%)	33.4
Compressor Work (MW)	4.7
Cycle Net Work (MW)	12.1
CO_2 mass flow (kg/s)	135.57

Table 3 - Cycle performance results of S-CO₂ iso-Brayton cycle under KAIST-MMR conditions

Analysis - Comparison

Fig. 21 – T-s diagram of simple recuperated S-CO $_2$ Brayton cycle and iso-Brayton cycle under KAIST-MMR conditions

Cycle Performance Parameters	Simple Recuperated	Iso-Brayton
Cycle Net Efficiency (%)	32.5	33.4
Compressor Work (MW)	10.2	4.7
CO ₂ mass flow (kg/s)	175.69	135.57

Conclusions

- 1. Although the technology is only conceptual, using an isothermal compressor in the KAIST-MMR layout **increases cycle net efficiency**.
- 2. Combining the pre-cooler and the compressor to one turbomachine has potential to **reduce the total sizing** of the reactor system.
- 3. Having reduced mass flow rate implies less pump work, less pressure drop in piping.
- 4. Through the isothermal compressor, total compressor work can be reduced greatly, up to 50%.

Further Works

- 1. Heat exchanger sizing analysis via KAIST-HXD in-house code
- 2. Isothermal compressor turbomachinery design via KAIST-TMD code
- 3. Optimization of cycle layout and parameters (e.g. sensitivity analysis with pressure ratio)
- 4. Experimental setup and analysis using KAIST SCO₂PE for near isothermal compression experiments

Fig. 23 - KAIST SCO₂PE Experimental Apparatus

References

[1] S. Kim, S. Baik, J. Moon, H. Yu, Y. Jeong, Y. Kim, J. Lee, Conceptual System Design of a Supercritical CO₂ cooled Micro Modular Reactor, Pro ceedings of ICAPP 2015, May 3-6, Nice, France.

[2] DODGE, EDWARD. "Supercritical Carbon Dioxide Power Cycles Starting to Hit the Market." Breaking Energy. Breaking Energy. Web. 09May 2016.

[3] V. Dostal, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, Ph. D. Thesis, Massachusetts Institute of Technology, 2004.

[4] Çengel, Yunus A., and Michael A. Boles. Thermodynamics: An Engineering Approach. 7th ed. Boston: McGraw-Hill, 2011. 361-362. Print.

[5] Moore, J. Jeffrey, Ph.D, Marybeth G. Nored, Ryan S. Gernentz, and Klaus Brun, Ph.D. "Novel Concepts for the Compression of Large Volumes of Carbon Dioxide." (2007). Web. 29 Jan. 2016.

THANK YOU!

Appendix

Under ideal gas assumptions,

Equation (1):

$$\begin{split} \eta_{iso-c} &= \frac{w_{iso-c}}{w_{real,a,c}} = \frac{RT_L \ln \frac{P_1}{P_2}}{h_4 - h_3} = \frac{RT_L \ln \frac{P_1}{P_2}}{h_{4s} - h_3} \eta_{a,c} = \frac{RT_L \ln \frac{P_1}{P_2}}{\frac{kRT_3}{k-1} \left(\left(\frac{P_1}{P_2}\right)^{\frac{k-1}{k}} - 1\right)} \eta_{a,c} \\ &= \frac{\frac{k-1}{k} \left(\frac{T_L}{T_3}\right) \ln \left(\frac{P_1}{P_2}\right)}{\left(\frac{P_1}{P_2}\right)^{\frac{k-1}{k}} - 1} \eta_{a,c} = \frac{\frac{k-1}{k} \ln \left(\frac{P_1}{P_2}\right)}{1 - \left(\frac{P_1}{P_2}\right)^{-\frac{k-1}{k}}} \eta_{a,c} \\ &\left(h_{4s} - h_3 = \int_3^{4s} v dP = \frac{kRT_4}{k-1} \left(\left(\frac{P_{4s}}{P_3}\right)^{\frac{k-1}{k}} - 1\right) \\ &= \frac{kRT_4}{k-1} \left(\left(\frac{P_1}{P_2}\right)^{\frac{k-1}{k}} - 1\right), \left(\frac{T_L}{T_3}\right)_s = \left(\frac{P_1}{P_2}\right)^{\frac{k-1}{k}} \end{split}$$

Equation (2):

$$\begin{split} \eta_{iso-Brayton} &= \frac{q_{in} - q_{out}}{q_{in}} \\ &= \frac{(h_1 - h_4) - (RT_L \ln \frac{P_1}{P_2} \cdot \frac{1}{\eta_{iso-c}} - (h_4 - h_2))}{h_1 - h_4} \\ &= 1 - \frac{(h_4 - h_3) - (h_4 - h_2)}{h_1 - h_4} = 1 - \frac{h_2 - h_3}{h_1 - h_4} \\ &\left(h_4 = h_3 + \frac{1}{\eta_c}(h_{4s} - h_3), \quad h_1 = h_2 - \eta_T(h_1 - h_{2s})\right) \end{split}$$

$$\begin{split} \eta_{iso-Brayton} &= 1 - \frac{h_1 - \eta_T (h_1 - h_{2s}) - h_3}{h_1 - h_3 - \frac{1}{\eta_c} (h_{4s} - h_3)} \\ &= \frac{\eta_T (r^{\frac{k-1}{k}} - 1) - \frac{1}{\eta_c} (1 - r^{-\frac{k-1}{k}})}{r^{\frac{k-1}{k}} - r^{-\frac{k-1}{k}} - \frac{1}{\eta_c} (1 - r^{-\frac{k-1}{k}})} \left(r = \frac{P_1}{P_2}\right) \end{split}$$

$$\begin{aligned} \text{Further elaborating Equations (3) and (4),} \\ & h_{2'} - h_6 = h_5 - h_{4'} \\ & h_5 = h_{4'} + \epsilon(h_{2'} - h_{4'}) \\ & h_6 = h_{2'} - \epsilon(h_{2'} - h_{4'}) \\ \eta_{recup} &= 1 - \frac{q_{out}}{q_{in}} = 1 - \frac{h_6 - h_{3'}}{h_1 - h_5} \\ &= \frac{\eta_T(T_H - T_{2'}) - \frac{1}{\eta_c}(T_{4'} - T_L)}{T_H - (1 - \epsilon)\left(T_L + \frac{1}{\eta_c}(T_{4'} - T_L)\right) - \epsilon(T_H - \eta_T(T_H - T_{2'}))} \\ &= \frac{\eta_T r^{\frac{k-1}{k}}\left(1 - (r')^{-\frac{k-1}{k}}\right) - \frac{1}{\eta_c}\left((r')^{\frac{k-1}{k}} - 1\right)}{r^{\frac{k-1}{k}} - (1 - \epsilon)\left(1 + \frac{1}{\eta_c}\left((r')^{\frac{k-1}{k}} - 1\right)\right) - \epsilon r^{\frac{k-1}{k}}\left(1 - \eta_T\left(1 - (r')^{-\frac{k-1}{k}}\right)\right)} \\ &= \frac{\eta_T r^{\frac{k-1}{k}}(1 - (r')^{-\frac{k-1}{k}}) - \frac{1}{\eta_c}\left((r')^{\frac{k-1}{k}} - 1\right)}{r^{\frac{k-1}{k}} - (1 - \epsilon)\left(1 + \frac{1}{\eta_c}\left((r')^{\frac{k-1}{k}} - 1\right)\right) - \epsilon r^{\frac{k-1}{k}}\left(1 - \eta_T\left(1 - (r')^{-\frac{k-1}{k}}\right)\right)} \left(r' = \frac{p_1}{p_{2'}}\right) \\ &= \frac{(h_{4'} = h_3 + \frac{1}{\eta_c}(h_{4s} - h_3), \quad h_{2'} = h_1 - \eta_T(h_1 - h_{2's})\right)} \end{aligned}$$

