Seismic Capacity Estimation of Steel Piping Elbow Under Lowcycle Fatigue Loading

2016. 05. 12

<u>Bub-Gyu Jeon</u>, Sung-Wan Kim, Hyoung-Suk Choi Dae-gi Hahm, Nam-Sik Kim

Introduction

Recent research issues

Description of component test

Test results

Numerical model update

Estimation of failure

Concluding remarks

Introduction

APR 1400 with Base Isolation System

Installation of the seismic isolation system

- Installation under the nuclear island
- For seismic performance improvement
- Minimization of design variation
- Possibility of displacement increase
- Seismic risk may increase at some equipments (example : Main Stem Line)

Base isolated pipe

- Critical point is elbow [Touboul et al., 1999]
- Failure
 - Low-cycle fatigue [NUREG, 2010]
 - Leakage by through crack(rupture)
- Failure criteria for fragility analysis was not decided in Korea

Recent research issues

Development of an Evaluation Method for Seismic Isolation System of Nuclear Power Facilities

- Fatigue test of the crossover piping [Mizuno et al.]
- Failure behavior of crossover piping seismic isolation system [Otoyo et al.]

Mechanical Behavior of Steel Piping Components under Severe Loading Conditions [Karamanos]

Recent research issues

Numerical Analysis

MECOS BENCHMARK 1st WORK SHOP

- International program organised under the initiative of OECD-NEA
- Comparison between experimental reference cases and numerical simulations regarding seismic fatigue ratcheting on piping
- Final objective : getting a better appreciation of fatigue ratcheting in design codes

Elbow results - Axial strains

Pusan National University

Description of component test

Test specimen description

상.하부 지그 (*2EA)

3in. SCH 40 (ASME B36.10M)

- O.D. : 88.9 mm
- t : 5.49 mm
- R : 114.3 mm
- Long elbow, welding connection
- SA-106 steel

Material

- E : 205 Gpa (estimation by tensile test)
- Nonlinear behavior

Pusan National University

Description of component test

Considering The Manufacturing Error

Μ	la	n	uf	a	ct	u	re		4	14		'EST	8 	NSP Accordin	EC1 1g to 4 3.1 /	1 01	N CI	RT	FIC	ATE		26, M	ی) SUNG oksensenden 2	GEREANCE 62-ro, Ga TEL: 82 FAX: 60 http://www	G BENC Ingseo-(-051-330 -051-330 wischen	CO., L1 3u, Eusa 10-450 10-335 rl com	D.(SKB) 1, Korea
PURCHAS	A						SPEC	FOR MA	TERIAL	A	ASNE S/034WPB \$ 13ED								CERTIFICATE NO.			QCL82016061298					
PJINO.			N/A	N/A						SPEC FOR INSPECTION				ASNE B15 9								DATE OF ISSUE			2016.05.26		
STARTING	MALE	INAL	SER	LESSI	945					SKB M).		2	01505222	19							Vis	UAL & DIVENSI	NSIUN SATSFACTORY			
NO.	SEQ(LINE/IN	EMNO	NO CLEANING					DESCRIPTION					214 2 DI 1			arr	HEAT NO.		MEG ID NC.		WILL MAKER			POR/CODE/TAG NO		
4				arb eusowyt) S4					U J S.W					SMLS BBCK			25 63		637268 637758		58						
															~ ~ ~ ~				_								
				,			CHEMICA	L COM	>DSIT OF	4(%) (i. :	LADLE	P : PRO	DBUCT										Т	ENSILE 1	EST		
	STD.	SPEC.	c	81	Mn	P	p s	Ni	C-	Mo	Cu	v	Nb	N	A	в	21	Fo	Ti	C.	E SPE	c	Y.S 12% offset	T.S		EL.	RA
HEAT		MIN		0.10	0.29	+											-		-	+	74	N	35.0	60.0		25.5	76
NC.	1	MAX	0.30		1.06	0.0	50 0.063	0.40	0.40	0.15	6.40	0.08						+		-	M	x		951		40.00	
63726		L	0.20	0.25	0.97	0.0	09 0.003	0.08	0.10	0.01	0.06	<0.11											48.1	69.5		40.0	
	·	P																			-						
		L				L											1										
		<u>L P</u>			L	1	<u> </u>								1				<u></u>								
IMPACTI	EST	TEST	5	ZE OF		AR	SORREDE	NERGY		I ATTRAL EXPENSION				PERCENT SHEAR				HARTWESS HR HEAT TREAT			TREATMENT	HS	IT FORMED, \$765	C. KA., "N	r .		
HEAT NO	1	TEMP.	SPEC	SPEC MEN(mm)		VALUE AVE			VE	VILLE AVE			UT	VALUE AV			IVE	E MAX 197		PM							
				RIN		1	1 1		11.			-+^		T				HB 1	14 1/1	11 FLATTENN		TEST NS "MEMO					
657268				HAZ					-				+					BENDING		UN3 TEST	NB						
				W194								-+-	-				-+			HYDRO	STATIC 1ES	IG 1EST NS					
				RIN H.A.Z																CORR	OSION TEST	M					
																				GRAN SIZE TEST		NR,					
				WIN																4	C TEST	167	<u>،</u>				
															WE	CERTI	FYTH	S MATE	RIAL HA	SBEEN	MANUFA	TURE	D AND EXAM	INED IN /	ACCOR	DANCEN	VITH ALL
								7	TEN	SIL	E	TES	Т								TH	ERESI		EXAMIN/	ATION A	RE ACC	EPTABLE.
8	PEC	2		Y.S 0.2% offset				T.S				EL.				RA					Certa a	L PL		FFICER	<u> </u>		
		×.	\downarrow	⊁S'				_		KSI			4	%			_	%				K 91	조(출범231조)	로 불이	익음 단	하실 수	21eLLE
MIN			\perp	35.0					80.0			1	25.5							_							
MAX		X.						95.0																			
			1	48.1					69.2			1	40.0														

- Elbow specimen were made by different make for considering the manufacture error.
- 1 case of specimen was under pipe blasting treatment for considering the surface treatment.

Description of component test

Test Plan

Description of component test

In-plane loading

- ±20mm to ±100mm

Internal pressure

- Water pressure booster : 3MPa

Measurement

- Loading force (Load cell)
- Loading displacement (LVDT)
- Strain response (strain gage, vision based system)

Test Specimen	P1-23, 26, 27 28 29 44	P1-24, 25, 30 31 45	P1-4, 18, 19, 32 46	P1-3, 16, 17, 33, 47	P1-1, 10, 12, 1 5 34 48	P1-2, 11, 14, 35, 49	P1-5, 6 13, 36, 39, 50	P1-20, 37, 40 41 51	P1-21, 38, 42 43 52
Mode	Cyclic	Cyclic Mada	Cyclic mada	Cyclic	Cyclic	Cyclic	Cyclic	Cyclic	Cyclic
Amplitude	±20mm	±30mm	±40mm	±50mm	±60mm	±70mm	±80mm	±90mm	±100mm
Pressure	3MPa	3MPa	3MPa	3MPa	3MPa	3MPa	3MPa	3MPa	3MPa
Remarks	Leakage	Leakage	Leakage	Leakage	Leakage	Leakage	Leakage	Leakage	Leakage

Pusan National University

Test results

Test results of 3 in. elbow specimen component

Leakage Nth cycle of elbow specimen 1) ±20mm : 82, 108, 110, 87, 76, 98 2) ±30mm : 45, 46, 29, 29, 38 2) ±40mm : 17, 18, 18, 14, 15 3) ±50mm : 11, 10, 11, 9, 12 4) ±60mm : 6, 6, 8, 8, 8, 8 5) ±70mm : 4, 5, 5, 4, 6 6) ±80mm : 5, 4, 4, 5, 4, 4, 5 7) ±90mm : 4, 4, 4, 4, 4 8) ±100mm : 4, 3, 4, 4, 3

±40mm, P1-4

±70mm, P1-3

Test results

Leakage Point of Elbow Specimen

- Leakage occurred on the near the crown in intrados direction
- Cracks (ruptures) grew up in axial direction

Test results

Test results of 3 in. elbow specimen component

P-D relationship

Dissipated energy

Pusan National University

Strain response (strain gage and vision based system)

Test results

Fatigue Curve for 3in. SCH40 Steel Pipe Elbow

Fatigue curve

- Loading amplitude exponentially decreased as the number of cycles increased
- Use maximum loading amplitude
- Exponential function
- Similar to other research results

1

1

10

100

1000

Number of cycles Nf

10000

100000

Numerical model update

Numerical Model Update

Numerical Analysis

- 1) Material
 - ABAQUS 6.12
 - Young's modulus : 205000 MPa
 - Possion's ratio : 0.3
 - Hardening rule : Linear kinematic hardening model
 - Displacement control
 - Critical direction : Hoop direction [Mizno, 2014]

[Comparison of P-D relation ship at 60 mm case] 60 40 · 20 -0 · Force [kN] -20 --40 --60 -80 -100

[Strain comparison for Hoop dir. Of 60 mm case]

Pusan National University

[Comparison of P-D relation ships]

Estimation of Failure

Estimation of Failure

Suggest the quantitative failure criteria for piping elbow considering the dissipated energy.

• Park and Ang, (1985)

$$D = \max\left(\frac{D_i}{D_y}\right) + b \sum_{i=1}^{N} \left(\frac{E_i}{F_y D_y}\right)$$

- D_{y} : Yield displacement F_{y} : Yield force
- \dot{D}_i : ith cycle displacement amplitude
- *E_i*: Dissipated energy [Force-Displacement]

• Banon (1981)

$$D = \sqrt{\left(\max\left(\frac{D_i}{D_y} - 1\right)\right)^2 + \left(\sum_{i=1}^N c\left(2\frac{E_i}{F_y D_y}\right)^d\right)^2}$$

Pusan National University

b : 0.025 (Cosenza et al., 1993) *c* : 1.1 (Castiglioni and Pucinotti, 2009) *d* : 0.38

Concluding remarks and further study

Concluding Remarks

In-plane cyclic loading tests under internal pressure condition were performed to estimate the failure behavior of the steel piping elbow—a weak component in a piping system under seismic condition.

Leakage phenomenon occurred on and near the crown in piping elbow. Those cracks grew up in axial direction.

The fatigue curve was estimated from test results. In the fatigue curve, loading amplitude exponentially decreased as the number of cycles increased.

A FEM model of piping elbow was modified with test results. The relationships between displacement and force from tests and numerical analysis was well matched. Therefore, failure of piping elbow can be predicted based on numerical analysis.

Suggest the quantitative failure criteria of piping elbow for seismic fragility analysis

Failure criteria of the piping elbow considering the dissipated energy.