Korean Nuclear Society Spring Meeting 2016 Jeju, Korea, May 12-13, 2016 Division 8 (Division of Nuclear Power Plant construction and Operation Technology) Paper #: 0310-266

Applicability of Alignment and Combination Rules to Burst Pressure Prediction of Multiple-flawed Steam Generator Tube

2016.05.12

M. W. Lee^a, J. S. Kim^a, Y. J. Kim^a J. Y. Jeon^b, D. M. Lee^c

^a Korea University
 ^b Doosan Heavy Industries & Construction
 ^c Korea Plant Service & Engineering

Introduction

SG tubes in PWRs have an **important safety role**.

- Some SG tubes have experienced some PWSCCs.
- PWSCC growth can cause **leakage** of reactor coolant and SG tube **rupture**.
- PWSCC growth behavior and burst pressure of SG tube should be evaluated to assess structural integrity.

[Root Causes of Worldwide SG Tube Plugging]

Introduction

- The PWSCC assessment procedures (ASME Code Sec.XI, EPRI SGMP) are based on the empirical models for single flaw.
- The procedures aren't sufficient for the multiple PWSCCs.
- Flaw modeling (alignment and combination rules) has been used to evaluate the multiple PWSCCs.

→Are alignment and combination rules applicable?

- For experimental validation, series of burst test performed.
- → Parametric study based on burst test.
- Test geometry (particularly flaw depth) so limited that FE damage analysis were carried out.
- → Parametric study based on FE damage analysis.

Alignment & Proximity Rules in Various Codes

4

KEM345:411, PVP2009-77068, JPVT-041403, BS7910 (7.1.2.2), ASME XI (IWA-3000), API579 (9.3.6.5), A16 (3250)

Burst Pressure Experiment (CHOSUN Univ.)

J. W. Kim and K. H. Eom, Burst Test on the Steam Generator Tube with Multiple Part through-wall flaws, *ASME Conference Proceedings*, **2015**, PVP2015-45273.

• From burst pressure test

 \rightarrow Interaction effect of multiple PTW flaws on the failure of SG tubes were evaluated

• Cases of multiple PTW flaws

→ Collinear axial flaws // non-aligned axial flaws // parallel axial PTW flaws are tested

AS: L=6.3, 12.7, 25.4, 50.8mm (single flaw) AC: L=6.3/6.3mm(s_1 =1,2,5mm) & 25.4/25.4mm(s_1 =1,2mm) ACT: L=6.3/6.3/6.3mm(s_1 = s_2 =2mm) & 12.7/25.4/12.7mm(s_1 = s_2 =1mm)

Rectangular shape with d/t=0.5

AN: L=6.3/6.3mm(l_1 =1,2,15mm) & 25.4/25.4mm(l_1 =1,2,15mm) ANT: L=6.3/6.3/6.3mm(l_1 =1,2mm) & 12.7/25.4/12.7mm(l_1 =1mm)

AP: L=6.3/6.3mm(l_1 =1mm) & 25.4/25.4mm(l_1 =1mm) ANT: L=6.3/6.3/6.3mm(l_1 =1mm/ l_2 =2,15,30mm) & 25.4/25.4/25.4mm(l_1 =1mm/ l_2 =2,15,30mm)

Net-Section Collapse Load Approach

For tube with axial single flaw

EPRI, Steam Generator Degradation Specific Management Flaw Handbook, **2001**, EPRI 1001191.

ANL, Validation of Failure and Leak-Rate Correlations for Stress Corrosion Cracks in Steam Generator Tubes, 2002, NUREG/ CR-6774.

Parametric Study based on Experiment

- Various depth effect on burst pressure
- 1. Collinear axial flaws
- 2. Non-aligned axial flaws
- 3. Parallel axial flaws

Multiple Flaws Assessment based on Experiment

Collinear axial flaws

✓ 균열이 짧을 수 록 combined flaw의 보수성 증가

• Non-aligned axial flaws

Cases of non-aligned axial flaws											
	No. of flaws	L_1	L_2	L_3	l	Exp.	AS JS	E ME, ME	PRI BS79 API57	10, A16, 79, FKM	Solution Single flaws Solution Axial non-aligned flaws ○ ASME, JSME • BS7910, API579, A16, FKM Single flaw
AN_A	2	6.3	6.3		1	50.0	42.2	Aligned			
AN_B	2	6.3	6.3		2	49.3	42.2				RT Not aligned flaw
AN_C	2	6.3	6.3		15	50.3	46.2	Not aligned			
AN_D	2	25.4	25.4		1	43.2	38.3	Aligned			
AN_E	2	25.4	25.4		2	42.5	38.3		Anglie	u	
AN_F	2	25.4	25.4		15	42.3	39.7	Not aligned	38.3	Aligned	EPRI
ANT_A	3	6.3	6.3	6.3	1	48.2	40.6	Aligned			$\begin{bmatrix} \Box & 50 & 55 & 40 & 45 & 50 & 55 \\ Experimental pressure D (MDa) \end{bmatrix}$
ANT_B	3	6.3	6.3	6.3	2	49.3	40.6			d	$\begin{bmatrix} \text{Experimental pressure, } P_{Exp.} \text{ (WIPa)} \end{bmatrix}$
ANT_C	3	12.7	25.4	12.7	1	42.5	38.3				

Aligned flaw: $P_{L,eff}$, $L_{eff} = \Sigma L_i$ Non aligned flaws: min($P_{L,i}$) • Parallel axial flaws

()	L	
1 1		1
	l ₁ ‡	
	i f	
	<i>l</i> ₂	

/₂ : 15 mm ≒ 90° 위치 차, 30 mm ≒ 180° 위치 차 평행 균열의 길이가 같아 정렬 유무와 관계없이 동일 P_L

or

✓ 평행 균열 사이의 간격에 따라 파열압에 증가 및 감소 효과 발생
 균열 간격 0~32°: Positive / 32~128°: Negative / 128° 이상: 독립 균열

S. I. Moon el al, Fatigue Fract. Enging. Mater. Struct., 2006, Vol.29, pp.623-631

Ductile Failure Simulation Method and Application to SG tube Burst Test

J. Y Jeon, Y. J. Kim and J. W. Kim, Burst Pressure Prediction of Cracked Steam Generator Tube using FE Damage Analysis, *ASME Conference Proceedings*, **2015**, PVP2015-45401.

Stress-Modified Fracture Strain and Ductile Damage Model

• Incremental damage (Ductility exhaustion)

$$\Delta \omega = \frac{\Delta \epsilon_{e}^{p}}{\epsilon_{f}} \qquad \Delta \epsilon_{e}^{p} = \frac{\sqrt{2}}{3} \sqrt{\left(\Delta \epsilon_{1}^{p} - \Delta \epsilon_{2}^{p}\right)^{2} + \left(\Delta \epsilon_{2}^{p} - \Delta \epsilon_{3}^{p}\right)^{2} + \left(\Delta \epsilon_{3}^{p} - \Delta \epsilon_{1}^{p}\right)^{2}}$$

• Local fracture $\omega = \sum \Delta \omega = \omega_{c} (=1)$ (cf) Miner's rule in high-cycle fatigue

Failure Simulation using Finite Element Analysis

- From FE analysis
- \rightarrow Calculate stress triaxiality and plastic strain increment
- \rightarrow Calculate incremental damage due to plastic strain
- \rightarrow When accumulated damage becomes critical
 - Reducing yield surface at integration point
 - Implemented into ABAQUS (UHARD)

cf) Element removal, Cohesive zone element, Node release

Element size effect on simulation results

 $\frac{\sigma_{\rm m}}{\sigma_{\rm m}} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{\sigma_1 + \sigma_2 + \sigma_3}$

 $\Delta \varepsilon_{e}^{P}$

6 F

 $\omega = \sum \Delta \omega \neq \omega_{c}$

 σ_{e}

 $\Delta \omega =$

1000

3σ_e

Comparison of FE with Experiment

Parametric Study based on Finite Element Analysis

- Various depth effect on burst pressure
- 1. Single surface flaw
- 2. Collinear axial flaws
- 3. Parallel axial flaws

Single Flaw Assessment based on FEA

• Single axial flaw that have various depth

Multiple Flaws Assessment based on FEA

Collinear axial flaws

17

				Case	es of o	collin	ear ax	kial fla	aws				
a/t	No. of flaws	L_1	L_2	L_3	<i>s</i> ₁	<i>s</i> ₂	FE	ASN I	EP <mark>4E, JSME,</mark> 3S7910	RI A	API579, 16, FKM	⁸⁰	Axial colinear flaws
0.1	2	6.3 6.3	6.3 6.3		25		75.6 75.7	68.2 68.2		67.3 67.1		W 70	ASME, JSME, BS7910
0.3	$\begin{array}{c} 2\\ 2\\ 2\\ 2 \end{array}$	6.3 6.3 6.3	6.3 6.3 6.3		1 2 5		60.5 60.5 60.8	57.2 57.2 57.2		54.6 54.4 54.0		$P_{\rm Eq.}$	• 0.1 • 0.3 • 0.5 • 0.7
	$\begin{array}{c} 2\\ 2\\ 2\\ \end{array}$	6.3	6.3		1 2 5		49.0 49.6 50.3	46.2 46.2 46.2		41.8 41.6 40.8		ssure,	RT
0.5	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array}$	6.3 25.4	25.4 25.4		$ \begin{array}{c} 1\\ 1\\ 2\\ 5 \end{array} $		44.0 44.0 44.0	39.7 39.7 39.7	N	39.1 38.3 38.3	Combined	cted bre	▲ EPRI API579, A16, FKM ▽ □ 0.1 ○ 0.3
0.7	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ \end{array}$	6.3 6.3 6.3	6.3 6.3 6.3		$\frac{1}{2}$		44.0 40.6 41.5 42.8	35.2 35.2 35.2	not combined $min(P_{L,i})$	29.1 28.7 27.7	$P_{L,eff}$ $L_{eff} =$	$\operatorname{Fredi}_{20}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.3	2 2 2	25.4 25.4 25.4	25.4 25.4 25.4		1 2 5		58.3 58.4 58.3	53.3 53.3 53.3		52.5 52.5 52.4	$\Sigma L_i + \Sigma S_i$		Predicted pressure, P_{FE} (MPa)
0.5	2 2 2	25.4 25.4 25.4	25.4 25.4 25.4		1 2 5		44.0 44.0 44.0	39.7 39.7 39.7		38.3 38.3 38.2			
0.7	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 3 \end{array}$	25.4 25.4 25.4	25.4 25.4 25.4	63	1 2 5 2	2	31.9 32.1 32.3 49.4	26.1 26.1 26.1 46.2		24.2 24.1 24.0 40.0			
0.5	3	12.7	25.4	12.7	1	1	44.1	39.7		38.3			

• Parallel axial flaws

or

Cases of collinear axial flaws										
a/t	No. of flaws	L	l_1	l_2	FE	EPRI All codes				
0.5	2	6.3	1		54.9	46.2				
0.5	2	6.3	2		53.3	46.2				
0.5	2	6.3	5		51.0	46.2				
0.7	2	6.3	1		46.1	35.2				
0.7	2	6.3	2		45.2	35.2				
0.7	2	6.3	5		43.2	35.2				
0.5	2	25.4	1		47.2	39.7				
0.5	3	6.3	1	2	53.6	46.2				
0.5	3	6.3	1	15	50.3	46.2				
0.5	3	6.3	1	30	50.4	46.2				
0.5	3	25.4	1	2	45.8	39.7				
0.5	3	25.4	1	15	43.6	39.7				
0.5	3	25.4	1	30	43.8	39.7				

*l*₂ : 15 mm ≒ 90° 위치 차, 30 mm ≒ 180° 위치 차 평행 균열의 길이가 같아 정렬 유무와 관계없이 동일 *P*_L

Conclusions

Applicability of net-section collapse loads for multiple circumferential cracked pipes

- Systematic analysis using FE damage analysis
- FE damage analysis validated against existing pipe test data
- Generate maximum loads for more general cases (crack depth and length)
- Comparison with estimated NSC loads
- Comparison shows that
 - Good agreement for two symmetrical surface crack cases
 - For asymmetric cases, deeper crack tends to be more dominant
- More parametric study might be needed ?
 - \rightarrow Need experts' help for careful selection of cases

Thank you very much!

