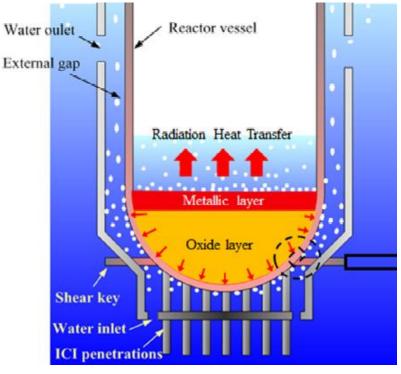
Investigation of Natural Convection Heat Transfer of Oxide Pool using 2D and 3D Experimental Facilities: MassTER-OP2 and OP3

2016. 5. 13


Su-Hyeon Kim, Hae-Kyun Park, Bum-Jin Chung

Kyung Hee University

Introduction

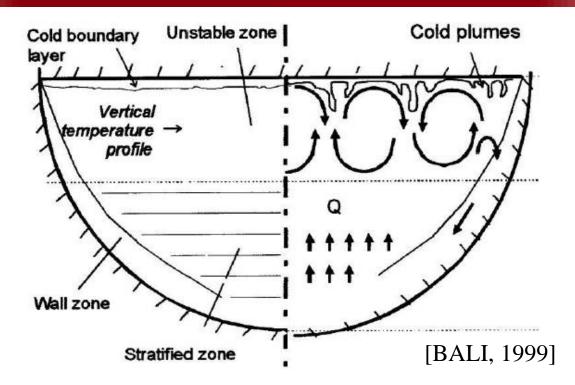
- Core catcher
- IVR-ERVC (In-Vessel Retention External Reactor Vessel Cooling)

IVR-ERVC

- 1. Specification of Modified Rayleigh number (Ra') for 2D facility
- 2. Comparison between 2D and 3D geometries
- 3. Development of correlation between 2D and 3D results
 2D correlation × Multiplier → 3D correlation
- 4. Inference of 3D results from 2D results

Summary of previous studies (2D)

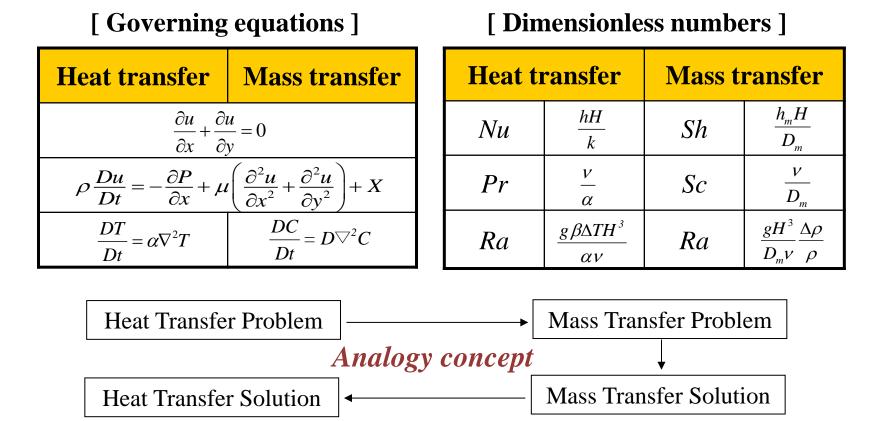
	BALI	SIGMA CP	COPOI	COPOII
Pool shape	Semicircular		Torispherical	
Ra _H '	$10^{13} - 10^{17}$	$5 \times 10^{6} - 7 \times 10^{11}$	$10^{14} - 10^{15}$	$8 \times 10^{14} - 10^{15}$
Correlations	$Nu_{up} = 0.383 Ra'_{H}^{0.233}$ $Nu_{dn} = 0.116 Ra'_{H}^{0.25}$	$Nu_{up} = 0.31 (Ra'_{H}Pr^{-0.36})^{0.245}$ $Nu_{dn} = 0.31 (Ra'_{H}Pr^{-0.215})^{0.235}$	-	_
Nu _{dn}	Maximum at uppermost curve	Peak at lower curve	Maximum at uppermost curve	Maximum at uppermost curve
Nu _{up}	-	Scattered	-	-
Image	er of the second			UPPER COOLER NTEROGEN GAS UTFLET WITROCEN WITROCEN SOURCE SOURCE SOURCE SOURCE



Summary of previous studies (3D)

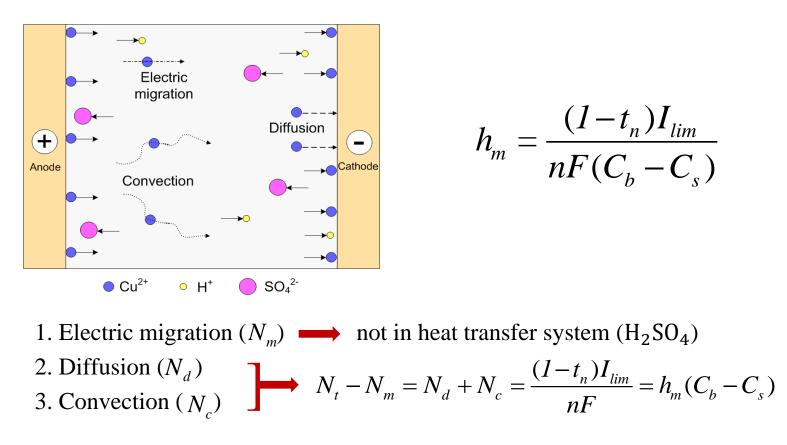
	UCLA	АСОРО	SIGMA 3D	LIVE	
Pool shape	Hemispherical				
Ra' _H	$5 \times 10^{11} - 8 \times 10^{13}$	$1 \times 10^{14} - 2 \times 10^{16}$	$4 \times 10^{14} - 3 \times 10^{15}$	1.2×10^{14}	
Correlations	$Nu_{dn} = 0.54(Ra'_{H})^{0.2}(H/R_{e})^{0.25}$	$Nu_{up} = 1.95Ra'_{H}^{0.18}$ $Nu_{dn} = 0.3Ra'_{H}^{0.22}$	-	-	
Nu _{dn}	Peak at lower curve	Maximum at uppermost curve	Peak at lower curve	-	
Nu _{up}	-	-	Scattered	-	
Image	Recrease East	Thermality Presson		amera ceservator heating system heating system heating system heating system heating system heating system	

Phenomena


- Main flow : The downward flows run down along the curved surface and merge at the bottom. Then, it move upward and disperse at the top plate.

- Second flow : There is also natural convective flow underneath the top plate.

Experimental methodology


• Analogy between heat transfer and mass transfer

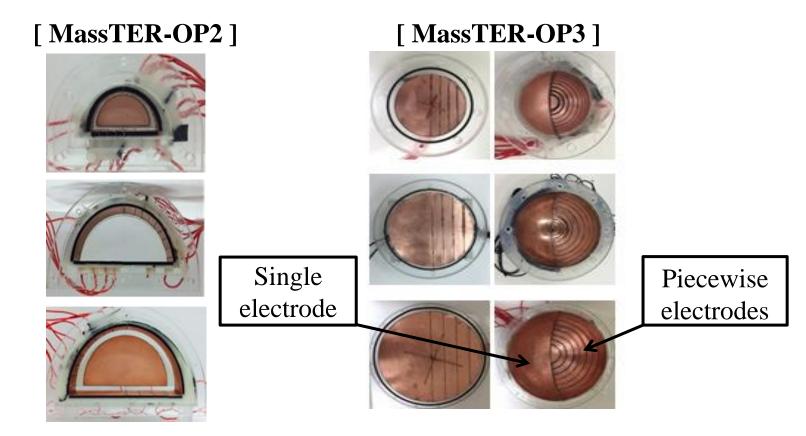
Copper electroplating system

• Mass transfer in a cupric acid-copper sulfate

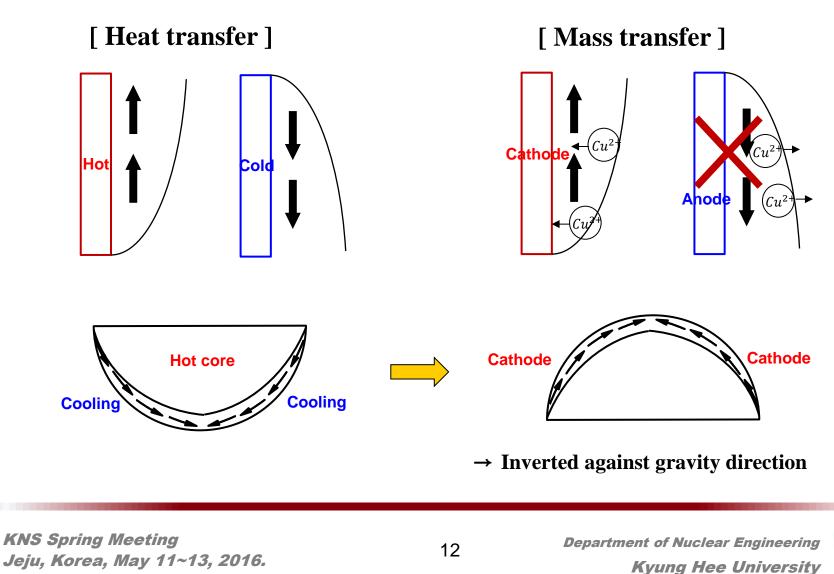
To incorporate the decay heat emitted in the mixture layer, the expression for internal heat generation is needed replacing the temperature difference expression for traditional *Ra*.

$$Ra'_{H} = Ra_{H} \times Da$$
, where Damköhler number $(Da) = \frac{q'''H^{2}}{k\Delta T}$

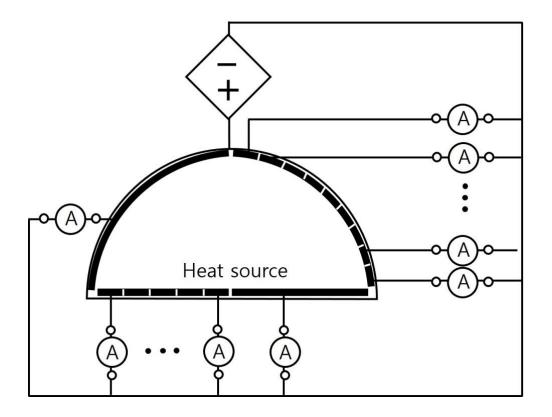
$$Ra'_{H} = \frac{g\beta\Delta TH^{3}}{\alpha\nu} \times \frac{q'''H^{2}}{k\Delta T} = \frac{g\beta q'''H^{5}}{\alpha\nu k}.$$


Modified Rayleigh number in mass transfer

[Heat transfer]	[Mass transfer]	
$Da = \frac{q'''H^2}{k\Delta T}$	$\Rightarrow Da_m = \frac{(1 - t_{Cu^{2+}})I'''H^2}{nFD_m\Delta C}$	
$Ra' = \frac{g\beta q''' H^5}{\alpha v k}$	$Ra' = 128.5 \frac{(1 - t_{Cu^{2+}})gI'''H^5}{nFD_m^2 v\rho}$	
$q^{\prime\prime\prime}$ (Volumetric heat generation)	<i>I '''</i> (Volumetric current)	
T (Temperature)	<i>C</i> (Concentration)	
\boldsymbol{k} (Thermal conductivity)	D_m (Mass diffusivity)	


Test apparatus

Mass Transfer Experimental Rig for Oxide Pool (MassTER-OP)



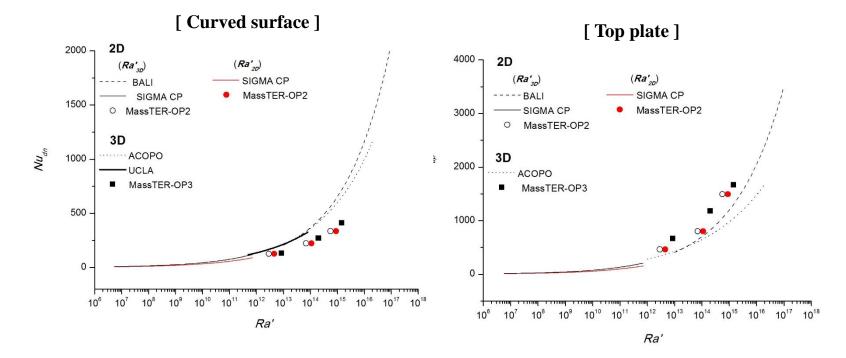
Test method

Test circuit

Test matrix

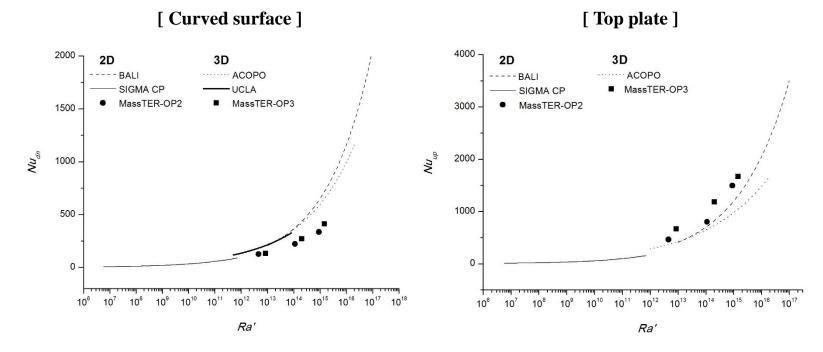
	H (m)	Ra' _H	Pr
MassTER-OP2	0.042	4.55×10^{12}	2,014
	0.100	1.11×10^{14}	
	0.167	8.99×10^{14}	
MassTER-OP3	0.042	8.64×10^{12}	
	0.100	2.02×10^{14}	
	0.167	1.46×10^{15}	

Specification of Ra'_{H} for 2D geometry

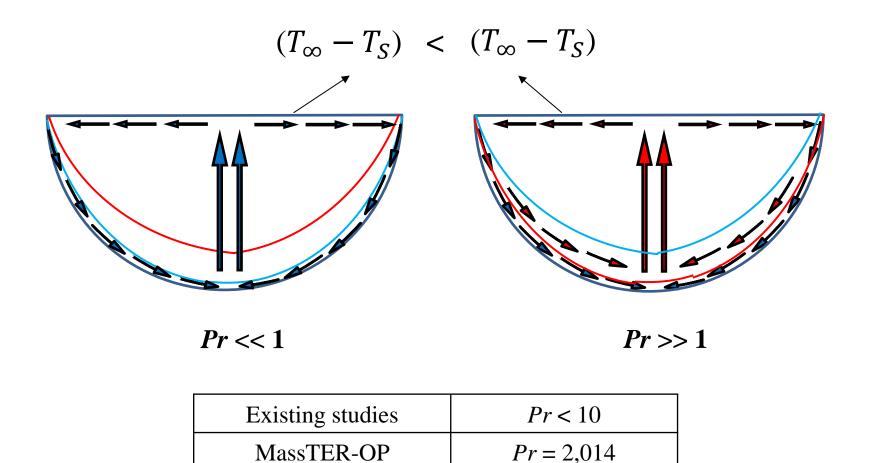

$$Ra'_{H} = \frac{g\beta q''' H^{5}}{\alpha v k}$$

i			
	Volumetric heat generation (q''') (In previous studies, no exact definition)		
3D	$\frac{q}{H^3} \qquad \qquad$		
2D	$\frac{q}{H^3} \qquad \qquad$		

Specification of Ra' for 2D geometry

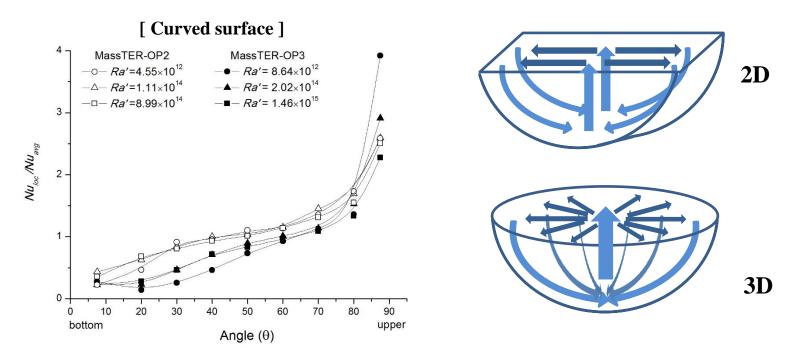

 Comparison of the 2D results between different definition of volumetric heat generation (q''')

Mean Nu – MassTER-OP vs. Existing studies


• Comparison of the existing heat transfer correlation with the results

 \rightarrow In the curved surface, MassTER-OP results showed the lower Nu_{dn} than the existing correlations. \rightarrow In the top plate, MassTER-OP results showed the higher Nu_{up} than the existing correlations.

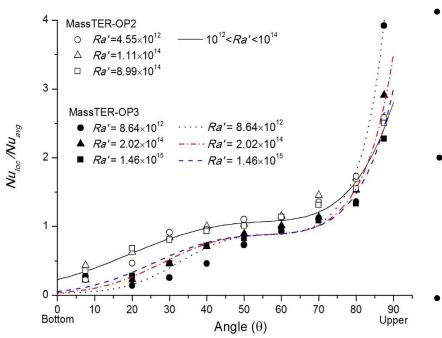
Mean Nu – MassTER-OP vs. Existing studies



KNS Spring Meeting Jeju, Korea, May 11~13, 2016. Department of Nuclear Engineering Kyung Hee University

Local Nu – 2D vs. 3D

• Comparison of Nu ratio (Nu_{loc}/Nu_{avg}) between MassTER-OP2 and OP3



- \rightarrow In the lower section, 2D results was higher than the 3D results
- → In the upper section (80°- 90°), 2D results were similar regardless of Ra' but 3D results were different depending on Ra'

Local Nu - 2D vs. 3D

Correlation between MassTER-OP2 and OP3

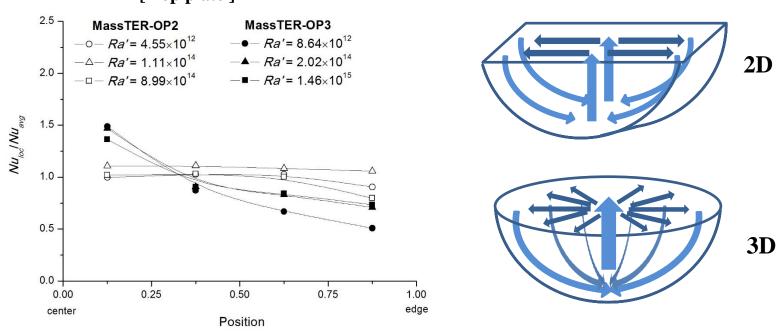
Correlation for MassTER-OP2

$$\begin{split} Nu_{2D} \ = \ 0.228 + 0.0132\theta + 0.000402\theta^2 - 0.00000156\theta^3 \\ - \ 0.000000219\theta^4 + 0.0000000231\theta^5 \end{split}$$

• Multiplier

$$\Phi = 0.7e^{0.00001(\theta - 57.95)^3 \left(\frac{1.81 \times 10^{13}}{Ra'}\right)^{0.24}} + 0.122$$

Correlation between MassTER-OP2 and OP3


$$\begin{split} Nu_{3D} &= Nu_{2D} \times \Phi \\ &= Nu_{2D} \times [0.7e^{0.00001(\theta - 57.95)^3 \left(\frac{1.81 \times 10^{13}}{Ra'}\right)^{0.24}} + 0.122 \end{split}$$

KNS Spring Meeting Jeju, Korea, May 11~13, 2016. Department of Nuclear Engineering Kyung Hee University

Local Nu - 2D vs. 3D

• Comparison of Nu ratio (Nu_{loc}/Nu_{avg}) between MassTER-OP2 and OP3

[Top plate]

- \rightarrow 3D results decrease consistently from center to edge
- \rightarrow But, 2D results was uniform until 0.6 position and decrease at the edge

Conclusions

- Natural convection heat transfer experiments were performed by mass transfer
 → High *Ra'_H* with small facilities
- Specification of Ra'_H definition for 2D geometries
 - \rightarrow Volumetric heat generation $(q'') = \frac{q}{v}$
- *Nu_{dn}*'s were lower and *Nu_{up}*'s were higher than the existing studies
 → Difference of *Pr*
- Local *Nu* ratios were different between MassTER-OP2 and OP-3
 → Difference of flow patterns between 2D and 3D geometries
- Comparing between 2D and 3D results, local *Nu* was different but mean *Nu* was identical. The correlation between 2D and 3D results was developed
 - → 3D results could be inferred from 2D results

Thank you for your attention !

23

