Aerial spraying to capture released radioactivity from NPP in a severe accident

Irfan Younus, Man-Sung Yim, Thiphaine Medard

May 12, 2016 KNS spring meeting, Jeju, South Korea

Nuclear & Quantum Engineering Department

Korea Advanced Institute of Science & Technology, South Korea

Contents

- Introduction
- Research objectives
- Spray deployment strategies
- Experimental work
- CFD modeling and simulations
- Future work
- Conclusion
- References

Introduction

- Reactor containment is the last barrier in NPP which envelopes reactor core and prevent the release of radioactivity into the environment in a nuclear accident
- But in a long run, this barrier can be leaked or failed to perform its function due to over pressurization after core melt or containment bypass event can occur
 - Large amount of radioactivity can be released to the environment
 - Radioactive fallout can contaminate near by homes and cities
 - Trans-boundary impacts
 - Loss of public trust on Nuclear power
 - Serious impact on economy and energy policy

How to meet these challenges if reactor containment leaks/fails in future ?

- **Currently,** no emergency response safety system available to capture the released radioactivity after containment leakage/failure
- **Therefore**, It is highly desirable to have new strategies to capture released radioactivity into the environment and to reduce the dose levels

NPP Containment

No more safety system after radioactive leakage

9/11 type of attack on NPP

Aerial spraying approach to capture released radioactivity

- In case of containment leakage/rupture in a severe accident
- ✓ Aerial spraying system is suggested
 - to capture the released radioactive material
 - Re-volatilization of captured radioactive material can be prevented
 - can reduce the decay heat at plant site
 - Radiation dose to the plant workers and public can be reduced
 - Public trust on NPPs can be enhanced

Research objectives

- To examine the spray removal efficiency of gaseous iodine and aerosol particles by
 - Alkaline water
 - Foam (Sodium lauryl sulphate)
- To examine the impact of aerosol particle size on spray removal efficiency
- CFD modeling and simulations of spray removal efficiency in CFX
- To compare the experimental results with CFD simulations
- CFD simulations of spray removal efficiencies in windy conditions

Water/foam spray deployment strategies

Selection of gas contaminants for experiments

- Gaseous iodine and aerosol particles were selected as gas contaminants in experiments
 - radioiodine and particles are considered most hazardous fission products
 - Large fractional releases from core and highly volatile
 - particles typically have a range of sizes (0.01-20 μ m)
 - exhibit very dynamic physical and chemical behavior
 - significant dose contributors to the plant workers and general public through inhalation

Spraying solutions to capture airborne contaminants

- ✓ Alkaline Water (NaOH.Na₂S₂O₃)
 - pH ~ 13
 - Highly reactive and converts iodine into stable and non-volatile species (Nal⁻)

10NaOH (aq) +Na₂S₂O₃+ 4I₂ \rightarrow 8NaI + 2Na₂SO₄ +5H₂O

- ✓ Aqueous Foam (Sodium lauryl sulpahte)
 - Aqueous foam is highly expandable after releasing from nozzle
 - Capable of rapid covering of leaked area
 - Enhances the capturing ability of water by reducing the surface tension
 - Minimizes the water consumption and secondary waste
 - Adding reactive chemicals (NaOH.Na₂S₂O₃) in foam reduce the volatility of captured radioactive contaminants
 - Adding foam thickening agents e.g. gelatin can immobilize the foam
 - easily and safely removable

Foam spray demonstration 3 % Sodium lauryl sulfate (NaC₁₂H₂₅SO₄)

Reaction rate of iodine in spray solution of different pH to form Nal⁻

Experimental setup for capturing gas contaminants by spray

Whole experimental arrangement

Foaming solution preparation

 Foaming agent (Sodium lauryl sulphate) mixing in water

Aerosol particles capturing experiments

Aerosol release

Particles used in our experiments

- TiO₂ (0.02, 0.15 and 5 μm sizes)
- Non-radioactive
- Highly dispersive in the air
- Human respirable size

Aerosol box

Iodine and particles measurement in spray solution by UV-Vis Spectrometer

S-3100 UV-Visible spectrometer Wavelength range (190-1100 nm)

Calibration curves of UV-Vis Spectrometer

Nal⁻ Calibration curves (226 nm) 0.00005 M 1 0.8 Absorbance 0.6 0.4 0.2 0 200 220 240 260 280 300 Wavelength (nm)

6.00E-05

5.00E-05

Iodine removal efficiencies by foam and water

Iodine mass balance in experiments

Experimental results of capturing aerosols by foam and water sprays

Spray flow rate: 2 liter/min

Effect of aerosol size on spray removal efficiency

Spray flow rate: 2 liter/min

CFD simulations of aerosols capturing in spray chamber

Comparison of simulations and experimental results

Spray flow rate: 2 liter/min

Wind impact on aerosol removal efficiency

Spray flow rate: 2 liter/min, Aerosol release rate: 30 lit/min

Wind impact on aerosol removal efficiency

Spray flow rate: 2 liter/min, Aerosol release rate: 30 lit/min

Future Work

- Development of large scale experimental setup (scaled down NPP model)
- Demonstration of aerosol release phenomena through leak points
- Impact of distance between nozzle and release point and nozzle angle
- The impact of environmental conditions (e.g. wind) on the spray efficiency
- CFD simulations along with model validations
- Field experiments in collaboration with fire station

Conclusions

- Sprays can effectively capture the gases/aerosol particles
- Foam-based spray system have high removal efficiency of aerosols as compared to water-based spray system
- Full cone nozzles are more effective in removing gas contaminants
- Spray have better removal efficiency for large sized particles
- Foam-based spray can be helpful in liquid waste minimization
- Radiation dose levels outside the containment can be minimized significantly after deployment of spray system

References

1-Irfan Younus, Man-Sung Yim, "Out-containment mitigation of gaseous iodine by alkaline spray in severe accident situation," *Progress in nuclear energy.*, 83, 167-176 (2015).

2. Bosland, L., Funke, F., Langrock, G., Girault, N, "PARIS project: radiolytic oxidation of molecular iodine in containment during a nuclear reactor severe accident: Part 2. Formation and destruction of iodine oxides compounds under irradiation e experimental results modelling". *Nucl. Eng. Des.* 241, 4026-4044 (2011)

3.State of the art report on nuclear aerosols NEA/CSNI/R(2009)

4. D. A Powers, S.B. Burson, "A Simplified Model of Aerosol Removal by Containment Sprays" NUREG/CR-5966, SAND92-2689, 1993.

Thank you !