2016 Spring KNS CFD Analysis of the Safety Injection Tank and Fluidic Device

Jai Oan Cho, Yacine Addad, Yohanes Setiawan Nietiadi, Jeong Ik Lee*

KAIST NQE M.S. student

CONTENTS

Introduction

The APR 1400 is a large pressurized water reactor (PWR). Just like many other water reactors, it has an **emergency core cooling system (ECCS)**.

A. Containnent Building B. Acutally Building C. Turbins Building D. Containnent Building E. Acutally Building F. Turbins Building

Safety Injection System

- One of the most important components in the ECCS is the **safety injection tank (SIT)**.
- The SIT is designed to provide ECC water in LOCA scenarios.
- The tank is pressurized to a certain level and once the system pressure drops below that level, the check valve opens and water flows into the core.

Safety Injection Tank

- Inside the SIT, a **fluidic device** is installed, which passively controls the mass flow of the safety injection and eliminates the need for low pressure safety injection pumps.
- As more passive safety mechanisms are being pursued, it has become more important to understand flow structure and the loss mechanism within the fluidic device.
- Current computational fluid dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study proposes to find a more exact result using CFD and more realistic modeling.

Literature Review

Benchmark and parametric study of a passive flow controller (fluidic device) for the development of optimal designs using a CFD code - Korea Hydro & Nuclear Power Company

- No nitrogen
- Free surface effect neglected

Literature Review

A multi-scale analysis of the transient behavior of an advanced safety injection tank - *Korea Atomic Energy Research Institute*

- Geometry simplified
- K-factor given artificially

Literature Review

Research Uniqueness

	Nitrogen	Precalculated K factor	Full Geometry	Transient
KHNP	Х	Х	Х	Х
KAERI	0	0	Δ	0
MITSUBISHI	Х	Х	Х	Х
KAIST	0	Х	0	Ο

Proposed Work

- With Nitrogen
- Without Precalculated K-factor
- Full Geometry
- Transient

Preliminary Results

- Mass Flow Rate was retrieved by differentiating the water level.
- However fluctuation in water level was too violent.
- To get a meaningful result, the water level was averaged over 5 secs.

Preliminary Calculation Conditions

- The **K-epsilon model** was used for the computation.
- Polyhedral meshes were used.
- Due to the violent vortex, finer meshes were used in the fluidic device.
- The tank was given a constant thermal resistance and constant ambient temperature with convective boundary condition on the tank wall.
- Lastly, a **pressure boundary of 1 bar** was given at the end of the discharge pipe.

Preliminary Results

The CFD mass flow rate matches quite well with the experimental result.

The total k factor(form loss factor) was calculated in the discharge pipe using the equation below.

11

**

Preliminary Results

✤ K factor plotted over time along with difference.

Temperature Distribution

• High Flow Mode

• Low Flow Mode

Animation

STAR-CCM+	
Y X Z	Chip 3
Solution Time 30 (s)	

Liquid Volume Fraction 0.8 Isosurface

Animation

Velocity in Fluidic Device

Animation

Turbulent Viscosity Ratio

Turbulent Kinetic Energy

Pressure

Comprehensive Analysis

Updated Mesh

of cells: 4 million
Tank Base size: 10cm
FD Base size: 0.25~1cm
Prism Layer: 6
Stretching Factor: 1.08
Growth Factor: 0.1

IBM High Performance Computer II HIG

- . 11.520 Giga flops for computing.
- . 25 Compute node
- . 1 Master node
- . 1 Login node
- . IBM system x3775 M3
- . CPU AMD Opteron 6174 12C *4, 256 GB RAM per node . Infiniband by Qlogic
- . 24TB Storage

Applications

- Fluent	- RELAP5
- CFX	- SCDAP
- Star-CD	- SNAP
- Star-CCM	- TRACE
- CONTAIN	- TRAC-P
- MELCOR	- WIMS

Summary & Future Works

- The SIT of APR1400 was analyzed using CFD.
- Calculation using CFD was performed to compare with experiment.
- Overall, the curve trend of CFD result followed the experimental result well.
- Mesh sensitivity analysis will be performed once comprehensive analysis is done.
- Initial Conditions for actual plant conditions (40 bar) will be tested. Results will be given as boundary conditions for testing on 1D system codes.
- Nitrogen entrainment will be analyzed.
- Fluidic Device will be optimized.

THANK YOU

