Measurements of Critical Heat Flux using Mass Transfer System

Department of Nuclear Engineering Kyung Hee University Seung-Hyun Hong and Bum-Jin Ching*

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Contents

- Introduction
- Theoretical background
 - IVR-ERVC experiments
 - CHF mechanism
- Experimental methodology
- Results
 - Open channel horizontal flat plate
 - Visualization
 - Open channel inclined flat plate
- Conclusions

Introduction

- IVR-ERVC concept is one of the managements system in severe accident
- Critical Heat Flux(CHF) has been used to judge the safety on IVR-ERVC
- In this study, the CHF measured using mass transfer, and verified the results

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Theoretical background (1/4)

• IVR-ERVC

	ULPU	SBLB	KAIST
Information	University of California (2004)	Penn State University (2003)	KAIST (2005)
Purpose	Measurement CHF with Insulation geometry and Gap size on various nuclear reactor vessel condition	Measurement CHF, with Insulation geometry on <u>Subcooling</u> , surface coating condition,	Mass flux, Exit quality, Subcooling Effect for CHF
Scaling analysis	1/1 (AP600, AP1000)	1720 (APR1400) Experimental apparatus — Linear Scale down Gap size - <u>F.B. Cheung</u> Scale down	1/1, 1/5, 1/10, 1/16 (APR1400) Experimentel apparatus - Linear Scale down Gap size - <u>F.B. Cheung</u> Scale down
Heat source	Heater	Cartridge heater	Electric current
Heat flux	Main heat source - CHE Sub heat source - Maximum heat flux without CHE	Masimum heat flux ∶1,8 ∰W/m²	Various 4 heat flux by difference thickness of heat source (Max for metal layer)
Measurement Position	Specific angle	Specific angle	Metal layer
Experimental apparatus			
Experimental results	Angite (degrees)	(august - branch transfer (august - branch transfer) (august - branch transfer) (aug	

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Theoretical background (2/4)

• IVR-ERVC

	CASA-SC	SULTAN	T-HERIMES
Information	Seoul National University (2012)	France CEA (1998)	KAEHL (2005)
		Measurements <u>CHF</u> on various Mass flow	T-HERMES-HALF : Verious entrence
Durrose	Effect of Shear Key and [CI nozzle on	rate, heat flux, Gap size, Angle	surface size and aeration rate
r arpose	CHE Measurements	Verification of CATHARE (Two-phase	T-HERIVES-SIVIALL : a preparatory
		flow numerical code)	experiments for T-HERMES-HALF
	1/10 (APR1400)		SMALL - 1/2, HALF - 1/21,5 (APR1400)
Scaling analysis	Esperimental apparatus - Ishii Scale down	Experimental apparatus - Full scale	Experimental apparatus – Linear Scale down
	Gap size - F.B. Cheung Scale down		Gep size - F.B. Cheung Scale down
Heat source	Electric current	Electric current	Electric current
	Metal layer : 2.5 MW/m ²	Only one side in a square duct	T-HERIMES - SMIALL :
Heat flux	Oxide larger $: 1.2 \text{ MM/m}^2$	$D = M \pi T m^2 = 1 D M \pi T m^2$	Average heat flux - 173 kW/m²
	CALCE LEVEL . I E TATA LI		T-HERMES-HALF : none
Measurement	Metal layer		T-HERMES-SMALL : Metal layer
Desition		In a square duct	T-HERMES-HALF :
Position			Entrance mass flow rate
Experimental apparatus			
Experimental results			Condition Mark Tan Factors (a)

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Theoretical background (3/4)

• Critical Heat Flux

Nucleate boiling

Film boiling

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Theoretical background (4/4)

- Critical heat flux(CHF)
 - \Rightarrow Maximum point of Heat flux
 - \Rightarrow Generating point of Film boiling
 - \Rightarrow Index for evaluating the structural safety

DNB, Dryout, Burnout, Boiling crisis, Boili

transition etc.

Transactions of the Korean Nuclear Society Spring Meeting 7 - Jeju, Korea, May 12-13, 2016

Experimental Methodology

• Mass transfer in a cupric acid-copper sulfate

 $N_m = \frac{t_n I_{lim}}{nF}$

- : Electric migration $\Rightarrow (N_m)$ —
- : Diffusion $\Rightarrow N_d$
- : Convection $\Rightarrow N_c$
- Mass transfer flux

: Total mass transfer flux

$$N_t - N_m = N_d + N_c = \frac{(1 - t_n)I_{lim}}{nF} = h_m(C_b - C_s)$$

 \Rightarrow Mass transfer coefficient

 $h_m = \frac{(1-t_n)I_{lim}}{nF(C_b - C_s)} \longrightarrow \begin{array}{c} \mathbf{C}_s \text{ can be regarded as } 0\\ \text{by measuring limiting current} \end{array}$

None reaction in mass transfer

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Experimental Methodology

• Governing equations

• Dimensionless numbers

Heat transfer	Mass transfer	Heat transfer	Mass transfer
$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}$	$\frac{\partial u}{\partial y} = 0$	$Nu = \frac{h_h L}{k}$	$Sh = \frac{h_m L}{D_m}$
$\rho \frac{Du}{Dt} = -\frac{\partial P}{\partial x} + \rho$	$u\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + X$	$Pr = \frac{v}{\alpha}$	$Sc = \frac{V}{D_m}$
$\frac{DT}{Dt} = \alpha \nabla^2 T$	$\frac{DC}{Dt} = D\nabla^2 C$	$Ra = \frac{g\beta\Delta TL^3}{\alpha v}$	$Ra = \frac{gL^3}{D\nu} \frac{\Delta\rho}{\rho}$

• Analogy concept

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Experimental Methodology

• Copper Electroplating System

Current change according to voltage growth

 Limiting current region, Concentration of electrode surface 0, Calculating mass transfer coefficient

 $(I_{lim} = Limiting \ current \Rightarrow sensible \ heat \ transfer)$

 Hydrogen ion alert to hydrogen vapor as getting the activation energy

$$(I_b = boiling \ current \Rightarrow latent \ heat \ transfer)$$
$$2H_3O^+ + 2e^- \rightarrow H_2 + \ 2H_2O$$

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Experiments – Open channel system

- Purpose
 - : CHF measurement in open channel system by mass transfer system
 - : Heater size, heater component, angle dependent.
- Methods
 - : Single electrode was used
 - : Galvanostatic method was adopted
- Test matrix

Prandtl number	<i>Length</i> (m)	Width (m)	Angle (θ)	Metal
2,014	0.010, 0.020	0.010, 0.020	0°, 30°, 45°, 60°, 90°, 180°	Copper, Aluminum, Statinless steel, Brass

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Experiments – Open channel system

Measurements of CHF on upward facing plate in Mass transfer

- : Drastic increase region of voltage according to current
- : Increasing current \Rightarrow Finding the drastic differ region of voltage
 - \Rightarrow Measuring Current \Rightarrow Transfer as heat flux using current

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Experiments – Open channel system

- 1. Power supply SGI 100A/150V(15kW)
- 2. Data Acquisition Agilent 34972A
- 3. Electrodes
 - : Cathode(0.01m x 0.01m, 0.02m x 0.02m), Anode(0.1m x 0.2m)

4. Working fluid

- : Sulfuric acid and copper sulfate
- $: CuSO_4 = 1.5M, H_2SO_4 = 0.05M$

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Experiments – Test circuit

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

CHF correlation in Mass transfer

- Process of heat flux calculation.
- 1) Calculate amount of H_2 as unit time and unit area $\frac{I_b}{nF} = (kmole / m^2 \cdot s) = (Hydrogen atom deoxidization mole / m^2 \cdot s)$
- 2) Using the latent heat of water 2247.63(J/g)
- 3) The energy for generating hydrogen bubble in the solution

$$\frac{I_{b}}{2F} \times 18(g/mole) \times 2247.63(J/g) \times \sqrt{\frac{\rho_{H_2O}}{\rho_{H_2}}} = q''$$

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Theory – determine the heater size

• Critical wavelength(λ_c) is determined to minimum plate size for measurements CHF

$$\lambda_c = \sqrt{\frac{\sigma}{g(\rho_l - \rho_v)}}$$

• Five times of most dangerous wavelength(λ_d) was used for determining minimum plate size as not to be affected with plate size.

$$\lambda_d = \lambda_c \sqrt{3} = \sqrt{\frac{3\sigma}{g(\rho_l - \rho_v)}}$$

• To apply for the mass transfer experiments using Sulfuric acid and copper sulfate, the λ_d is 0.7mm thus Minimum plate size is over 3.5 mm.

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Experiments – determine the heater size

- Identify the heater size as experiments
 - Using various plate size as $1 \text{ cm} \times 1 \text{ cm}$, $2 \text{ cm} \times 2 \text{ cm}$
 - Current density and CHF are much similar

Heater size	Heater size Results of current Current dens (A) (A/m ²)		CHF(W/m ²)
1 cm×1 cm	18 A	180000	101.46
$2 \text{ cm} \times 2 \text{ cm}$	66 A	170000	95.82

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Experiments – determine the heater component

- Identify the heater component as experiments
 - Using various metal as copper, Aluminum, Stainless steel, Brass
 - The Aluminum is optimal metal for experiments

	CHF (kW/m ²)	Copper eduction	Copper wipe	Suitability
Copper	107.15	many	bad	2
Aluminum	101.5	few	good	1
Stainless	112.9		1	2
steel	112.8	many	good	3
Brass	_	many	bad	3

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

CHF correlation in Heat transfer

• Zuber correlation has been used to predict the CHF

$$q''_{CHF} = C h_{fg} \rho_v^{1/2} [g\sigma(\rho_l - \rho_v)]^{1/4}$$

- C = 0.149 (Horizontal flat plate)
- $h_{fg} = Latent heat$
- g = Gravitiational acceleration
- $\sigma = Surface tension$
- $\rho_l = Density for liquid$
- $\rho_v = Density for vapor$

Results - Heat transfer v.s Mass transfer

	Heat transfer	Mass transfer Experiment
CHF(kW/m ²)	1253.1	169.1
Initial Temperature(°C)	100	22
Final Temperature(℃)	100	-
Liquid density (kg/m ³)	957.9	1096.56
Vapor density (kg/m ³)	0.5956	0.0813
Surface tension (N/m) 58.9×10^{-3}		72.0×10 ⁻³
Gravity(m/s ²)	9.8	
Constant number	0.149	
Latent heat(J/g)	2247.63	2449
Products	<i>H</i> ₂ 0	H ₂
Methods	Phase change	Electrochemical reaction
Reaction formula	-	$2H_3O^+ + 2e^- \to H_2 + 2H_2O$
Mass condition	2 Phase	2 Component

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Experiments – Visualization

• Visualization using High-speed camera

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Experiments results – Visualization

• Visualization results – still cut

Current(A)	Still cut	Current(A)	Still cut
0.1		15.0	
1.0		20.0	0
5.0		25.0	
10.0		25.0 (CHF)	•

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Experiments results - Visualization

• Visualization results – CHF

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Experiments results – Angle dependent

- CHF measurements on downward facing plate
 - CHF improved according to angle increase.
 - Comparison with existing correlation

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

Conclusions

- Critical heat flux can be measured using mass transfer methodology.
- The hydrogen bubble from the electro plate in mass transfer system are combined to be film boiling such as heat transfer CHF mechanism.
- Between heat and mass transfer results are much similar in relative value because the CHF mechanism are same.
- The mass transfer experimental apparatus and condition is very simple than heat transfer.

Thank you for your attention.

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016

