Impairment of Heat Transfer in the Passive Cooling System due to Mixed Convection

May, 12-13, 2016

Myeong-Seon Chae and Bum-Jin Chung

Dept. of Nuclear Engineering, Kyung Hee University

Introduction (1/3)

- Adoption of the Passive Cooling System has been increasing
 - The concept of passive safety is emphasized in design of NPP to accomplish the enhanced safety goal
- The passive cooling system focused on the Natural convection cooling and heat transfer
 - Under accident conditions to remove the residual heat out of the containment
- The Reactor Cavity Cooling System (RCCS) is the passive cooling system
 - Very High Temperature Reactor (VHTR) designed to remove the residual and decay heat

Introduction (2/3)

- When the natural convection occurs in the long enough heated section,
- The flow regime becomes similar to the forced convection
 - Due to the duct flow condition
- This force convective flow together with the local buoyancy effect can form
 - Complex mixed convective flow condition

Department of Nuclear Engineering

Kyung Hee University

Introduction (3/3)

- RCCS(Reactor Cavity Cooling System)?
 - The decay heat transfers from the fuels to the graphite by Conduction
 - It transfers to reactor vessel and RCCS cooling panels (Riser tube) by
 Radiation and Convection
 - The buoyant flows are induced in riser tubes (The fluid temperature ↑, Density↓)
 - Natural circulation of fluid in riser tubes occurs
- This paper discuss
 - Local heat transfer rate in riser tube can be impaired due to the Mixed convective flows

[[]J.H. Kim et al., KAERI, 2015]

Kyung Hee University

Department of Nuclear Engineering

Background (1/4)

- Convective heat transfer is described in one mode which mode is mainly dominated as heat transfer phenomena (Mode : Natural convection, Forced convection)
- Pure forced convection
 - When the flow is generated by external force, effect of natural convection can be neglected in heat transfer
- Mixed convection
 - When the flow is generated by internal and external force, the natural convection should be considered
 - The Mixed Convective flow is influenced both by Re and Gr
 - The governing parameter B_o should be the combination of both numbers
- B_o , lots of different combinations were used depending on the investigators Gr / Re^2 $Gr / Re^{3.636} Pr^{0.818}$ $Gr / Re^{3.425} Pr^{0.8}$ $8 \times 10^4 Gr / Re^{3.425} Pr^{0.8}$ [Easby, 1978] [Alferov et al., 1973] [Rouai, 1987] [Hall and Jackson, 1969]

Department of Nuclear Engineering

Kvuna Hee Universitv

Background (2/4)

• Heat transfer behavior in Laminar flow

- Buoyancy-aided flow : Enhanced Nu compared to the forced convection
 → Velocity enhances near the heated wall
- Buoyancy-opposed flow : Impaired Nu compared to the forced convection
 - \rightarrow Flow velocity reduced

Background (3/4)

• Heat transfer behavior in Turbulent flow

- Buoyancy-aided flow
 - An impairment of the heat transfer rate for small buoyancy
 - \rightarrow Laminarization
 - \rightarrow Same direction of buoyancy impaired

turbulence production

- Then, a gradational enhancement for large buoyancy (over critical *Gr*)
- Buoyancy-opposed flow
 - Enhanced of the heat transfer rate
 - \rightarrow Increased turbulence production

Department of Nuclear Engineering

Kyung Hee University

Background (4/4)

• Turbulence production

- The region of turbulence production is **Edge of viscous sublayer**
- Proportion of shear stress, velocity gradient

Analysis

- The local *Nu* of the axial position pipe was impaired in certain local *Gr* and *Re* range correspond to the forced convection (Laminarization)
- The local Nu is recovered or enhanced
 - \rightarrow This can be associated with the recovery of turbulence production

- The *Nu* distribution exhibits the nonmonotonic behavior

[[]J.H. Kim et al., KAERI, 2015]

Department of Nuclear Engineering

Kyung Hee University

Mass transfer experiments using analogy concept

• Governing equations

• Dimensionless numbers

Heat transfer	Mass transfer	Heat transfer	Mass transfer
$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$		$Nu = \frac{h_h L}{k}$	$Sh = \frac{h_m L}{D_m}$
$\rho \frac{Du}{Dt} = -\frac{\partial P}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + X$		$Pr = \frac{v}{\alpha}$	$Sc = \frac{V}{D_m}$
		$Ra = \frac{g\beta\Delta TL^3}{2}$	$Ra = \frac{gL^3}{\Delta\rho}$
$\frac{DT}{Dt} = \alpha \nabla^2 T$	$\frac{DC}{Dt} = D_m \nabla^2 C$	$ \qquad \alpha v$	$D_m v \rho$
		$Re = \frac{uD_h}{v}$	

• Analogy concept

Copper Electroplating System

• Measurements were made using limiting electroplating current technique with $CuSO_4$ -H₂SO₄

Total mass transfer rate = Electric migration +**Diffusion**+ **Convection** $(N_T = N_{Em} + N_D + N_C)$

Not exist in heat transfer, thus minimize it using H_2SO_4

Mass transfer coefficient

$$h_m = \frac{(1-t_n)I_{lim}}{nF(C_b + C_s)} \longrightarrow C_s \approx 0$$

Experiments - Apparatus

(a) Electric pump

(b) Bypass valve

(c) Magnetic flowmeter

(d) Flow straightener

(e) Test section

KNS, Spring meeting, Jeju May, 12-13, 2016

Department of Nuclear Engineering Kyung Hee University

Experiments - Apparatus

(a) Electric pump

(b) Bypass valve

(c) Magnetic flowmeter

(d) Flow straightener

(e) Test section

KNS, Spring meeting, Jeju May, 12-13, 2016

Department of Nuclear Engineering Kyung Hee University

Experiments - Apparatus

 Adopted piecewise electrodes in order to measure the *local average Nu* - 0.01m × 15 piece (Total length 0.15m)

Experiments – Test matrix

	NACEF	Present test facility	
Test section type	Rectangular duct	Circular duct	
D (m)	0.04 (L=0.24)	0.063	
D _h (m)	0.069	0.063	
L (m)	4.0	0.15	
Velocity (m/s)	1.9	0.11	
Re _{Dh}	6,300		
Ra_L	5.7×10^{11}		
Gr _L	8.0×10^{11}	2.7×10^{8}	
Pr	0.7	2,094	

Pr	D (m)	L (m)	Ra _L	<i>Re</i> _{Dh}
2,094	0.063	0.01	1.7×10^{8}	1,000, 2,000, 6,300,
		0.15	5.7×10^{11}	10,000, 12,800

Results : Comparison with correlation (1/3)

- Comparison of test results with forced convection correlation (Laminar)
 - Kays (1955) : Laminar forced convection correlation (Thermal developing, Hydrodynamic fully developed condition)
 - Fitted forced correlation developed on test rig

• Kays, 1955

$$Nu_D = 3.66 + \frac{0.0668Gz}{1 + 0.04Gz^{2/3}} \quad Pr \ge 5$$

• Fitted correlation

$$Nu_D = 3.66 + \frac{0.075Gz}{1 + 0.04Gz^{2/3}}$$

Department of Nuclear Engineering

Kvuna Hee Universitv

 $Gz = Re_D Pr(D / L)$

Results : Comparison with correlation (2/3)

- Comparison of test results with forced convection correlation (Turbulent)
 - Petukhov et al. (1972) : Turbulent forced convection correlation (Thermal developing, Hydrodynamic fully developed condition)

Results : Comparison with correlation (3/3)

- Comparison of test results with mixed convection correlation
 - Similar to Wragg and Ross's correlation

• Wragg and Ross, 1967

$$Sh_D = 1.95 \left[Re_D ScD / L + 0.0532 (Gr_D ScD / L)^{0.75} \right]^{0.33}$$

• Colburn, 1933
$$Nu_D = 1.65(Re_D PrD / L)^{1/3}[1 + 0.015(Gr_D)^{1/3}]$$

• Swanson and Catton, 1987

$$Nu_{D} = 0.0115Re^{0.8}Pr^{0.5} \left[1 + \left\{ 1 - \left(\frac{696}{Re_{D}^{0.8}}\right) + \left(\frac{8300Gr_{D}}{Re_{D}^{0.26}Pr^{0.5}}\right) \right\}^{0.39} \right]^{-1/3}$$

Results : x/D vs. $Nu_D(1/4)$

• x/D vs. Nu_D (Laminar flow)

Results : x/D vs. $Nu_D(1/4)$

• x/D vs. Nu_D (Laminar flow)

• Increased x/D, Nu_D enhanced \rightarrow Initial velocity enhanced

Results : x/D vs. $Nu_D(2/4)$

• x/D vs. Nu_D (Turbulent flow)

Results : x/D vs. $Nu_D(2/4)$

• x/D vs. Nu_D (Turbulent flow)

Results : x/D vs. $Nu_D(3/4)$

• x/D vs. Nu_D (Turbulent flow)

Results : x/D vs. $Nu_D(3/4)$

• x/D vs. Nu_D (Turbulent flow)

Results : x/D vs. $Nu_D(4/4)$

• x/D vs. Nu_D (Turbulent flow)

- Increased x/D, Nu_D impaired \rightarrow Laminarization
- Increased x/D, Nu_D recovered or enhanced \rightarrow Recovery of turbulence production
- Minimum $Nu_D Re \uparrow, x/D \uparrow (18\%, 54\%, 56\%)$

Conclusions

- In the Passive Cooling System devices, RCCS, the buoyant flows are induced
 - The local average Nu of natural convective flow can be impaired due to the mixed convective flow
- This study measured the Forced convection and Mixed convection heat transfer in a vertical circular duct by mass transfer experiment using the analogy concept
 - Test range correspond to the Rayleigh number with NACEF
 - Adopting the Piecewise electrodes, Varying Reynolds number
- Comparison of heat transfer rates existing correlation and present data
 - Present data (L=0.01m) agreed with forced convection correlation (Laminar, Turbulent)
 - Present data (L=0.15m) agreed with mixed convection correlation for of Wragg and Ross

Conclusions

- *x/D* vs. *Nu* (Laminar flow)
 - The local average Nu : Enhanced compared on the forced convection due to Velocity increased
- *x/D* vs. *Nu* (Turbulent flow)
 - The local average Nu : Impaired compared to the forced convection due to Laminarization
 - And then, recovered and enhanced since the turbulence production
- This study is design of the test facility and experiments test scope for similarity with NACEF
- Extended the test range for Reynolds number, Diameter and Length of test section
 - Characteristic length of Gr
- The phenomenological analysis will be developed in the heat transfer of mixed convection with laminarization and turbulence production

Thank you !

Appendix I

KNS, Spring meeting, Jeju May, 12-13, 2016 Department of Nuclear Engineering Kyung Hee University

