

Monte Carlo estimation of the absorbed dose in computed tomography

@2016 KNS spring meeting

Jinwoo Kim, Hanbean Youn, Ho Kyung Kim

Radiation Imaging Laboratory, School of Mechanical Engineering Pusan National University, South Korea

Outline

I. Introduction

II. Methods

- a. Numerical phantom
- b. Simulation geometry
- c. Data categorizing algorithm

III. Preliminary Results

- a. Absorbed energy distribution
- b. Relative dose
- IV. Discussion
- V. Conclusions

Introduction

Introduction

Axial CT image of the abdomen

Selected Risks from Radiation Sickness

Introduction

Conventional CT dose index (CTDI)

- ✓ CTDI limitations
 - Standardized dimension
 - Head phantom ($\Phi 16 \text{ cm}$)
 - Body phantom (Φ 32 cm)
 - Homogeneous composition
 - No distinction of organ
 - Measureable to only the average dose at particular location

Introduction

Monte Carlo method

- \checkmark CT dose estimation
 - Patient specific dose estimation
 Applicable to a variety of body shape
 - Organ dose estimation
 - Dose imparted to each organ
 - Relative dose estimation
 - Dose due to primary photons
 - Dose due to secondary photons

Methods

Numerical phantom

Katia Sourbelle, Thorax phantom, Institute of Medical Physics (IMP)

Numerical phantom

Part	Shape	Center	Dimension (cm)	Material	Density (g/cm ³)
Thorax	Elliptical cylinder	<i>O</i> = [0,0,0]	$h = 50 \ r_{x,T} = 20 \ r_{y,T} = 10$	Soft tissue	1.00
Lung	Ellipsoid	$C_{L,L} = [-10.5,0,0]$ $C_{L,R} = [10.5,0,0]$	$r_{x,L} = 7.5$ $r_{y,L} = 5.5$ $r_{z,L} = 15$	Lung	0.26
Heart	Sphere	$C_{H} = [0,4,0]$	$r_{H} = 3.5$	(Striated) muscle	1.04
Spine	Cylinder	$C_{S} = [0, -5, 0]$	$r_{c} = 1.75$	(Cortical) bone	1.92

Table: Definition of the different parts of the phantom

XCOM: Photon Cross Sections Database, National Institute of Standards and Technology (NIST)

Simulation geometry

Data categorizing algorithm

Jinwoo Kim (jinwookim@pusan.ac.kr)

Workflow

Radiation Imaging Laboratory, Pusan National University Jinwoo Kim {jinwookim@pusan.ac.kr}

[†]Source, [‡]Termination

Results

Absorbed energy distribution

Absorbed energy distribution

Organ dose

Relative absorbed energy of each organ

Relative absorbed dose of each organ

Reaction type – Tissue

Reaction type – Spine

Discussion

Discussion

Mass attenuation coefficient of soft tissue

Radiation Imaging Laboratory, Pusan National University Jinwoo Kim {jinwookim@pusan.ac.kr}

Photon Energy	Compton scattering	Photoelec. Absorption	Total wo/ coherent
5.00E-02	1.788E-01	2.878E-02	2.076E-01
6.00E-02	1.755E-01	1.583E-02	1.913E-01
8.00E-02	1.682E-01	6.160E-03	1.744E-01

Mass attenuation coefficient of soft tissue

Relative absorbed dose of soft tissue region

Discussion

Photon Energy	Compton scattering	Photoelec. Absorption	Total wo/ coherent
5.00E-02	1.632E-01	2.221E-01	3.853E-01
6.00E-02	1.609E-01	1.225E-01	2.864E-01
8.00E-02	1.552E-01	5.072E-02	2.060E-01

Mass attenuation coefficient of spine

Relative absorbed dose of spine region

Conclusions

Conclusions

Secondary dose is more important than primary dose when radiation is used for low-Z material such as the human body.

- Thus, to estimate a radiation dose for the human body, we should not ignore the multiple-scattering.
- Further studies will be the validation of the algorithm with analytic calculation model and the study of dose distribution for the different CT scan conditions.

Thanks for attention.

