

Extension of STREAM Double Heterogeneity Method to Coated TRISO Particles

<complex-block>

Contents

Introduction

Methodology

- Methodology based on Equivalence theory
- Dancoff Factor for an Infinite Array with Dual-kernel model

Implementation

• STREAM

Verification

- Model Description
- Case Descriptions and Results

Conclusion

CORE COmputational Reactor physics & Experiment lab.

Introduction

- Doubly Heterogeneous (DH) fuel
 - Micro heterogeneity + Macro heterogeneity

- VHTR employs TRISO particle fuel
- When Fuel Compact region is homogenized with volume weight, significant reduction in reactivity occur
- UNIST method based on Equivalence Theory
- Cannot account for the effect of coated layer of TRISO particle, which can cause 400 pcm 600 pcm bias

- Microscopic Heterogeneity
 - Dancoff factor $c = \frac{1}{1 + \overline{l}_m \Sigma_m}$ and Heterogeneity Parameter $\beta = \frac{1 c}{\overline{l}_m \Sigma_m}$
 - Escape XS $\Sigma_e = \frac{1-c}{\bar{l}_f}$ and Background XS $\sigma_b^{(j)} = \frac{\lambda \Sigma_{f,p} + \Sigma_e}{N^{(j)}}$
 - **Parameter** $\omega = \frac{v_m (1-\beta)}{v_c \sigma_b^{(j)}}$
- Macroscopic Heterogeneity
- Background XS $\tilde{\sigma}_{0}^{(j)} = \frac{\lambda \tilde{\Sigma}_{F,p} + \Sigma_{E}}{\tilde{N}^{(j)}}$ • DH Background XS $\sigma_{0}^{*(j)} = \frac{\tilde{\sigma}_{0}^{(j)}}{1 + \omega \tilde{\sigma}^{(j)}}$

Effective XS
$$\tilde{\sigma}_{X,g}^{(j)} = \frac{\sigma_{X,g}^{(j)}(\sigma_0^{*(j)})}{1 + \omega \, \sigma_{a,g}^{(j)}(\sigma_0^{*(j)})}$$
 where $\sigma_{X,g}^{(j)}(\sigma_0^{*(j)}) =$

$$= \frac{\left\langle \frac{\sigma_X^{(j)}(E)}{\sigma_a^{(j)}(E) + \sigma_0^{*(j)}} \frac{1}{E} \right\rangle}{\left\langle \frac{1}{\sigma_a^{(j)}(E) + \sigma_0^{*(j)}} \frac{1}{E} \right\rangle}$$

indices: *j* (nuclide), *X* (reaction), *g* (energy group)

GORE COmputational Reactor physics & Experiment lab.

Single-kernel model vs. Dual-kernel model

- Fuel kernel can be touched in single-kernel model
- Minimum distance between fuel kernels with coating layer
- Need new Dancoff factor calculation which account for coating layer
- Dancoff factor based on Chord method ³

³ W. Ji et al, Analytical Dancoff factor evaluations for reactor designs loaded with TRISO particle fuel, Annals of Nuclear Energy, Vol.63, pp. 665-673, 2014.

GORE COmputational Reactor physics & Experiment lab.

- Dancoff Factor based on Chord Method
 - Dancoff factor of infinite medium is defined as

$$c = \int_0^\infty f(l) \operatorname{Lexp}(-\frac{l}{\lambda}) dl$$

• Probability density function for chord length

$$f(l) = 0$$
 for $0 < l < \tau$ where τ is minimum chord length
 $f(l) = \alpha \exp(-\frac{l}{\beta})$ for $\tau < l < \infty$

• Two Normalize Conditions

$$\int_{0}^{\infty} f(l)dl = 1$$
$$\int_{0}^{\infty} l \Box f(l)dl = \frac{4r}{3} \frac{1 - frac}{frac}$$

- Dancoff Factor based on Chord Method
 - Dancoff factor with dual-kernel model

 $c^{D} = \frac{\exp(-\Sigma_{m} \tau)}{1 + (\overline{l_{m}} - \tau)\Sigma_{m}} \quad \text{where } \tau \text{ is minimum chord length}$

• Limiting condition of Dancoff factor with 0-layer thickness

$$\lim_{\tau \to 0} c^{D} = \lim_{\tau \to 0} \frac{\exp\left(-\Sigma_{m} \tau\right)}{1 + \left(\overline{l_{m}} - \tau\right)\Sigma_{m}} = \frac{1}{1 + \overline{l_{m}} \Sigma_{m}} = c^{S}$$

• Dancoff Factor comparison with increasing layer thickness

ORE COmputational **R**eactor physics & **E**xperiment lab.

• Microscopic Heterogeneity

- Dancoff factor $c^{D} = \frac{\exp(-\Sigma_{m}\tau)}{1 + (\overline{l_{m}} \tau)\Sigma_{m}}$ and Heterogeneity Parameter $\beta = \frac{1 c}{\overline{l_{m}}\Sigma_{m}}$
- Escape XS $\Sigma_e = \frac{1-c}{\bar{l}_f}$ and Background XS $\sigma_b^{(j)} = \frac{\lambda \Sigma_{f,p} + \Sigma_e}{N^{(j)}}$
- **Parameter** $\boldsymbol{\omega} = \frac{v_m (1-\beta)}{v_c \sigma_b^{(j)}}$
- Macroscopic Heterogeneity
 - Background XS $\tilde{\sigma}_{0}^{(j)} = \frac{\lambda \tilde{\Sigma}_{F,p} + \Sigma_{E}}{\tilde{N}^{(j)}}$ • DH Background XS $\sigma_{0}^{*(j)} = \frac{\tilde{\sigma}_{0}^{(j)}}{1 + \omega \tilde{\sigma}_{0}^{(j)}}$ • Effective XS $\tilde{\sigma}_{X,g}^{(j)} = \frac{\sigma_{X,g}^{(j)}(\sigma_{0}^{*(j)})}{1 + \omega \sigma_{a,g}^{(j)}(\sigma_{0}^{*(j)})} \text{ where } \sigma_{X,g}^{(j)}(\sigma_{0}^{*(j)}) = \frac{\left\langle \frac{\sigma_{X}^{(j)}(E)}{\sigma_{a}^{(j)}(E) + \sigma_{0}^{*(j)}} \frac{1}{E} \right\rangle}{\left\langle \frac{1}{\sigma_{a}^{(j)}(E) + \sigma_{0}^{*(j)}} \frac{1}{E} \right\rangle}$

- With increasing Layer thickness, parameters including Dancoff factor of infinite array changes
- Continuous Energy Monte Carlo code McCARD
- Fuel condition in 4.3% fuel packing fraction
- Up to 400 pcm reactivity decrease with 0.035cm layer

9

ULLIEL

- Lattice Physics code STREAM
 - Use Method of Characteristic (MOC)
 - Adopt Equivalence Theory for resonance treatment
 - Double-het Self-shielding method
 - MG XS library for VHTR based on ENDF/B VII.0
 - NJOY generate MG XS library and Resonance integral table
 - Monte Carlo code generate IR parameter
 - 8 isotopes, 997energy group used
 - Slowing down calculation carried out with carbon moderator

ULLIEL

- Single Pin-cell problems are used
- Verifications are basically based on HTTR fuel design model
- TRISO Fuel conditions are varying to cover other conventional VHTR fuel designs.
- Verification is focused on DH effect $k_{eff}(DH) k_{eff}(SH)$
- TRISO fuel condition of conventional VHTRs

	Kernel	Layer	Fuel	Grain	Fuel	
	Radius	Thickness	PF*	PF*	Enrichment	
	[µm]	[µm]	[%]	[%]	[w/o]	
HTTR	300	165	8.0	30	3-10	
PBMR-400	250	210	1.5	9	6	
MHTGR-350	213	210	3.4	35	15	
PMR-200	250	215	4.3	27	12	

*PF = Packing Fraction

Verification : Model Description

• Top view of a pin-cell

r1	1.200 cm					
r2	1.625 cm					
r3	2.050 cm					
Pitch	4.7926 cm					
Graphite Moderator	1.75 g/cm ³					
He Coolant	6.55x10 ⁻⁵ g/cm ³					
Graphite	1.612 g/cm3					
Si	0.192 g/cm3					
UO2	10.41 g/cm3					

- Fuel compact
 - Modified to increase variation of coating layer
 - 1st, HTTR A type of TRISO particle introduced
 - 2nd, Coating layers are smeared with moderator matrix
 - 3rd, Theoretical layer is introduced outside fuel kernels

Verification : Reference Code

- Reference code used for verification is continuous energy Monte Carlo code, McCARD developed from SNU
 - McCARD can simulate TRISO fuel model using implemented random distribution function
 - The function can handle up to 61% of fuel grain packing fraction
 - *K_{eff}* of each original models and imaginary layered models is compared with McCARD results
 - Comparing stochastic error both models are equivalent in reactivity

	Fuel	Fuel	Grain k_{eff} result		ts and Difference		
Fuel	Enrichment	PF	PF	Original	Imaginary	δ	
Туре	[w/o]	[%]	[%]	Model	Layer	[pcm]	
HTTR	3			1.23367(19)	1.23351(18)	-16	
	6	9.33	33.65	1.33039(20)	1.32996(19)	-43	
	10			1.37479(18)	1.37419(20)	-60	

- Basically, HTTR TRISO fuel design is employed
- Fuel PF varies from 3% to 12% to cover conventional VHTR fuel designs.
- Layer thickness from 0 to 430µm (maximum grain PF to account for over-coating)
- Fuel Enrichment 3 w/o and 6 w/o
- Kernel radius from 250µm to 400µm
- HTTR TRISO particle
 - **PyC = Pyrolytic Carbon**

Verification : Description and Results

• Various Fuel PF, Layer Thickness

	Fuel	Kernel	Fuel	Layer	DH Effect		
Case	Enrichment	Radius	PF	Thickness	[pcm]		
Number	[w/o]	[µm]	[%]	[µm]	Mc	ST	Err
1		6 300	3	0	7018	7005	-13
2				130	6922	6884	-38
3				190	6920	6829	-91
4				430	6652	6613	-39
5			5	0	5532	5572	40
6				130	5419	5386	-33
7				190	5350	5302	-48
8				390	5108	5036	-72
9			7	0	4491	4485	-6
10	6			130	4330	4266	-64
11				190	4237	4168	-69
12				310	3954	3979	25
13			9	0	3678	3705	27
14				130	3481	3462	-19
15				190	3302	3355	53
16				260	3266	3235	-31
17			12	0	2851	2858	7
18				80	2741	2700	-41
19				130	2657	2605	-52
20					190	2434	2496

std for Mc results is about 20pcm

CORE COmputational Reactor physics & Experiment lab.

Verification : Description and Results

• Lowered Fuel Enrichment, Various Fuel Kernel Size

	Fuel	Kernel	Fuel	Layer	DH Effect		
Case	Enrichment	Radius	PF	Thickness	[pcm]		
Number	[w/o]	[µm]	[%]	[µm]	Mc	ST	Err
21		250	4.3	0	4820	4787	-33
22				130	4697	4618	-79
23				170	4648	4567	-81
24				230	4582	4491	-91
25				330	4452	4368	-84
26			8.6	0	3116	3096	-20
27				130	2913	2855	-58
28				170	2754	2785	31
29				230	2748	2682	-66
30	3	3 400	4.3	0	7357	7400	43
31				130	7240	7265	25
32				170	7163	7225	62
33				230	7119	7164	45
34				430	6976	6965	-11
35			8.6	0	4984	5033	49
36				130	4808	4815	7
37				170	4785	4750	-35
38				230	4681	4653	-28
39				290	4473	4451	-22

CORE COmputational Reactor physics & Experiment lab.

std for Mc results is about 20pcm

Verification : Results

• DH Effect Comparison

- DH effect decrease with increasing layer thickness
- Layer affect reactivity up to 500 pcm, which was unable to predicted previously
- 150µm increase of fuel kernel radius caused up to 2500 pcm increase in DH effect
- With increasing FP, DH effect decreases

Verification : Results

• DH Effect Error Comparison

- With Single-Kernel Model, errors are up to 600 pcm
- Dual Kernel model errors are mostly within 100 pcm
- Modified method well evaluate effect of coating layer with various fuel condition

- Effect of coating layer on DH self-shielding cannot be negligible
- DH self-shielding has high sensitivity on size of fuel kernel and fuel volume packing fraction
- Newly modified methodology well evaluate the DH effect from reference Monte Carlo code McCARD
- The method successfully overcame the limit of the previous method of modelling the coating layer of TRISO particle

UDIST CCRE