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1. Introduction 

 
Condensation heat transfer under the presence of 

noncondensable gases (NCGs) is an important issue in 
nuclear safety because the presence of even a small 
quantity of NC gases in the vapor largely reduces the 
condensation rate. To understand this phenomenon, a 
lot of theoretical and experimental studies have been 
performed[1~8]. The extensive assessment of the 
condensation model of the safety analysis codes has 
been also performed. 

The main objective of the present study is the 
assessment of the condensation heat transfer model of 
the severe accident code MELCOR 1.8.6 under the 
presence of NCGs. 

 
2. Condensation model of the MELCOR 1.8.6 

 
When NCGs are present, the condensation 

phenomenon is largely reduced by accumulated NCGs 
near the condensing surface. Since the total pressure 
remains constant, the partial pressure of vapor at the 
liquid-vapor interface is lower than that in the bulk 
mixture, providing the driving force for vapor diffusion 
towards the liquid-vapor interface[11]. This situation is 
illustrated in Fig. 1.  

The MELCOR 1.8.6 employs the molar-based 
stagnant film model (SFM) to predict this 
phenomenon[9,10]. In the SFM, the condensation mass 
flux is given by 
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where ρv is the density of vapor at Tsat(Ptot), Ptot is the 
total volume pressure, Psrf is the saturation pressure of 
steam at the surface temperature and Pstm is the steam 
partial pressure in the volume. Eq. (1) is derived from 
the Fick’s laws of diffusion which is based on the mass 
transfer theory. The mass transfer coefficient, 
hD=Sh·D/Lc, is a function of the Sherwood number, 
Sh=NuSc1/3Pr-1/3, which is drawn from the theory of the 
heat and mass transfer analogy. 

 
In the MELCOR 1.8.6, the film tracking model is 

used to calculate the liquid film thickness as follows:.  
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 The film Reynolds number, Eq. (3), includes the mass 
flow rate into the heat structure surface from film 
drainage from an adjacent heat structure surface ( 

in
m ) 

and the mass flow rate out of this surface ( 
out

m ). w, μf 

and ρf in Eqs. (3) and (4) are the width of the surface, 
the viscosity of the film and the density of the film, 
respectively. 

 

 
Fig. 1. Concept of the condensation under the presence of 

NCGs 

 
3. Simulation results 

 
Condensation experiments performed under the 

thermal-hydraulic conditions similar to those inside a 
reactor building during accidents are collected and 
categorized into 4 types: vertical flat plates, outer 
surface of vertical pipes, inner surface of vertical pipes, 
inner surface of horizontal pipes. The test conditions of 
condensation experiments[1~8] are presented in Table I.  

Figures 2 through 5 summarize the results of the 
assessment. Fig.2 shows that the MELCOR under-
predicts the condensation heat transfer on the vertical 
flat plate.  Particularly, in high-speed inlet conditions 
(above 2.5m/s) the error increases. Fig. 3 indicates that 
the calculated condensation on outer surface of vertical 
pipe is good agreements with measured value. Fig.4 
presents a comparison of condensation heat flux 
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Table I. The classification of experiments and the test conditions 

Experiments Geometry No. of test
Pressure

(bar) 
Air mass fraction

Velocity 
(m/s) 

Mass flow 
rate (kg/s) 

COPAIN[1] 
Vertical flat plates 

4 1.0 0.77~0.86 0.3~3.0 - 
CONAN[2] 10 1.0 0.13~0.72 2.5~2.6 - 

Dehbi[3] Outer surface of  
vertical pipes 

9 1.5 ~ 4.5 0.33 ~ 0.89 - - 
Pan[4] 2 2.0, 4.0 0.45, 0.95 - - 

Kuhn[5] 
Inner surface of  
vertical pipes 

24 1.0 ~ 5.0 0.20 ~ 0.40 - 0.010~0.027
Park[6] 5 1.1 ~ 4.7 0.20 ~ 0.30 - 0.005~0.011

Siddique[7] 26 1.1 ~ 4.9 0.14 ~ 0.35 - 0.003~0.013

Wu[8] 
Inner surface of 
horizontal pipes 

34 1.0 ~ 4.0 0.05 ~ 0.20 - 0.006~0.053

 
predictions with experimental data in the case of inner 
surface of vertical pipe. Kuhn’s experiment conducted 
under relatively large mass flow rate is well predicted 
but Park’s and Siddique’s experimental data are under-
predicted. 

In the condensation experiment on inner surface of 
horizontal pipe conducted by Wu, temperatures are 
measured at top and bottom side. However, calculated 
value is averaged one. Thus one to one comparison 
between the calculation and the experimental data is not 
reasonable. Thus, local heat fluxes are compared as 
shown in Fig. 5. It illustrates that the MELCOR code 
under-predicts the experiment. The results of other 
conditions are also similar to those in Fig. 5. 

 

0 8 16 24 32
0

8

16

24

32
 COPAIN
 CONAN

-40%

+40%

-20%

C
al

. 
he

at
 f

lu
x(

kW
/m

2
)

Exp. heat flux(kW/m2
)

+20%

 
Fig. 2. Condensation on vertical flat plate 
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Fig. 3. Condensation on outer surface of vertical pipe 
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Fig. 4. Condensation on inner surface of vertical pipe 
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Fig. 5. Condensation on inner surface of horizontal pipe 

 
4. Conclusions 

 
In this study, the condensation heat transfer model of 

the MELCOR 1.8.6 is assessed using various 
experiments which have 4 different types of geometry. 
Through the comparison of the results, it was shown 
that the MELCOR code generally under-predicts the 
condensation heat transfer except the condensation on 
outer surface of vertical pipes and improvement is 
needed for other geometries. Especially, considering the 
major applications of MELCOR, the condensation heat 
transfer model on a vertical plate, which is equivalent to 
the inner wall of a reactor building, should be improved 
first. 
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