# Glass waste forms for heat-generating Cs<sup>+</sup> and Sr<sup>2+</sup> from pyro-processing

Minsuk Seo<sup>a\*</sup>, Jong Heo<sup>a</sup>, Hwanseo Park<sup>b</sup>

<sup>a</sup>Division of Advanced Nuclear Engineering and Department of Material Science and Engineering, POSTECH <sup>b</sup>Nuclear Fuel Cycle Process Development Division, KAERI



- 1. Introduction
- 2. Experiments & Results
- Glass preparation
- Properties (density, glass transition temperature, expansion coefficient) measurement
- Chemical durability (Product Consistency Test)
- 3. Thermal stability (simulation on heat generation)
- 4. Conclusion



# Introduction

### Spent nuclear fuel

We are considering spent nuclear fuel from 4.5%, 55,000MWd/TU, 1MTU PWR after ten years of cooling

Highly radioactive and short lived nuclei(e.g. <sup>134</sup>Cs) will decay during the cooling

Separation of heat-generating nuclei(<sup>137</sup>Cs, <sup>90</sup>Sr: t<sub>1/2</sub>~30years) from the rest of wastes can reduce the storage site area





\* TRU(Transuranic elements : 초우라늄) : 인공적으로 만들어진 우라늄보다 무거운 원소

POHANG UNIVERSITY OF SCIENCE AND TECHNO

Figure: https://atomstory.or.kr/p/43773/

# Introduction

**Pyro-processing** 



Heat-generating(radioactive) Cs<sup>+</sup> and Sr<sup>2+</sup> should be immobilize safely

Waste loading  $\propto$  Heat load

Glass waste forms were used world wide for many years to immobilize heatgenerating HLW since easy production, good chemical durability and thermal stability



#### Cs<sup>+</sup> glass selection

#### (1) Given waste form

Cs<sup>+</sup> will be captured by fly ash filter<sup>2)</sup> in an oxide form during the off-gas treatment (~1000 $^{\circ}$ C)

 $Cs_2O(g) + Al_2O_3 \cdot 4SiO_2(s) \rightarrow 2CsAlSi_2O_6(s)$ 

#### (2) Glass design

Increasing melting temperature Increasing heat load

Glass frits

Wastes

 $B_2O_3$ ,  $Na_2O$ , CaO were added to decrease the melting temperature

| Compositions      | Concentration (wt.%) |
|-------------------|----------------------|
| SiO <sub>2</sub>  | 60                   |
| $AI_2O_3$         | 25                   |
| Cs <sub>2</sub> O | 15                   |

 $Cs_2O$  waste loading: 10wt.% Melting temperature:  $\leq 1200^{\circ}C$ (reduce volatilization of  $Cs_2O$ ) Chemical durability:  $<2g/m^2$ 

In previous research<sup>3)</sup>, 9.6wt.% loaded Cs containing borosilicate glass with CaO addition which improved the chemical durability of waste glass up to 1g/m<sup>2</sup> of B, Na, Cs PCT ri values

# **Experiments & Results**

#### Cs<sup>+</sup> glass preparation



Compositional analysis by ICP-AES, ICP-MS

| Compositions      | Cs+ glass(wt.%) |          |  |  |
|-------------------|-----------------|----------|--|--|
| Compositions -    | nominal         | analyzed |  |  |
| SiO <sub>2</sub>  | 40              | 38.36    |  |  |
| $AI_2O_3$         | 16.67           | 17.57    |  |  |
| $B_2O_3$          | 10              | 10.24    |  |  |
| Na <sub>2</sub> O | 15.83           | 17.48    |  |  |
| CaO               | 7.5             | 7.44     |  |  |
| Cs <sub>2</sub> O | 10              | 8.91     |  |  |
|                   |                 |          |  |  |

Volatilization of Cs<sub>2</sub>O: 10.9% Waste loading: 64.84 wt.%



# Introduction

Sr<sup>2+</sup> glass selection

#### (1) Given waste form

 $SrCl_2+BaCl_2 \rightarrow SrCO_3$ ,  $BaCO_3$  wastes<sup>3)</sup>, exchanged chlorides (e.g. LiCl) can recycle into pyro-processing.

Residual SrO and BaO have 5:12 weight ratio after pyro-processing.

#### (2) Glass design



30wt.% loaded Sr containing calcium aluminosilicate glass with 0.06g/m<sup>2</sup> of Sr PCT  $r_i$  value was produced from 1350 °C melting condition<sup>4</sup>)

3) Cho, Yung-Zun, et al. "Carbonate reaction of alkaline-earth element by carbonate agent injection method." *Journal of nuclear science and technology*45.5 (2008): 459-463.
4) Sengupta, Pranesh, Sara Fanara, and Sumit Chakraborty. "Preliminary study on calcium aluminosilicate glass as a potential host matrix for radioactive 90 Sr An approach based on natural analogue study." *Journal of hazardous materials* 190.1 (2011): 229-239.



#### Characterization

XRD patterns of both  $Cs_2O$  (a) and SrO (b) waste glasses proved non-crystalline nature of the glasses

Density was measured by Archimedes method and DEP (Diethyl Phthalate,  $\rho$ =1.120g/cm<sup>3</sup>) was used

Glass transition temperature( $T_g$ ) was measured by DTA (10 °C/min heating rate)

Linear thermal expansion coefficient was measured by TMA (10  $^{\circ}$ C/min heating rate) from RT to 500  $^{\circ}$ C





| Properties                           | Cs⁺ glass              | Sr <sup>2+</sup> glass | HLW borosilicate glass <sup>5)</sup> |
|--------------------------------------|------------------------|------------------------|--------------------------------------|
| Density                              | 2.646g/cm <sup>3</sup> | 3.030g/cm <sup>3</sup> | ~2.7g/cm <sup>3</sup>                |
| Glass transition temperature         | <b>518</b> ℃           | <b>587</b> ℃           | > <b>550</b> ℃                       |
| Linear thermal expansion coefficient | 9.97×10⁻⁰/℃            | <b>7.78</b> ×10⁻⁰/℃    | 8.1×10⁻ <sup>6</sup> /℃              |



#### **Chemical durability**

PCT(Product Consistency Test)<sup>6)</sup>, which was developed specifically to measure the chemical durability of radioactive glass waste forms.

10ml DI water/g of 75 $\mu$ m~150 $\mu$ m( $r_{avg}$ =56 $\mu$ m) powder in Teflon container in 90°C for 7days.

$$\frac{\delta H}{V} = \frac{\delta W}{\rho r_{avg} V}$$

Normalized elemental release(g/m<sup>2</sup>)  $\Rightarrow NL_i = \frac{c_i(\text{sample})}{(f_i) \cdot (SA/V)}$ 

Values of all elements from both glasses were well below the reference value of 2.0g/m<sup>2</sup> <sup>7</sup>

| alaaa                  | Elemental normalize release(g/m <sup>2</sup> ) |       |       |       |       |       |       |       |
|------------------------|------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| glass                  | Si                                             | AI    | В     | Na    | Ca    | Cs    | Ва    | Sr    |
| Cs+ glass              | 0.100                                          | 0.099 | 0.207 | 0.399 | 0.016 | 0.137 | -     | -     |
| Sr <sup>2+</sup> glass | 0.133                                          | 0.003 | 0.637 | 0.693 | -     | -     | 0.296 | 0.388 |

6) ASTM C1285-14, Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT), ASTM International, West Conshohocken, PA, 2014

7) Secondary Waste Form Down-selection Data Package: Fluidized Bed Steam Reforming Waste Form. Pacific Northwest National Laboratory, 20



### **Assumptions & conditions**



## (1) Canister

Material: stainless steel STS-304

Geometry: hollow cylindrical shape with concave bottom In France and Japan<sup>8)</sup>, this kind of canister was successfully used for several decades

We used diameter of 0.35m and 1m height canister.

### (2) Thermal power

 Elemental power density(W/g)<sup>9)</sup> Cs: 262W/4070g, Sr: 110W/1230g
Elemental concentration in glass(g/g)
Density of glass(g/cm<sup>3</sup>)



Specific thermal power(W/m<sup>3</sup>)

Waste

in glass matrix

Cap

Stainless steel enveloppe



Governing equations<sup>10)</sup>

### (1) Conduction

Cylindrical coordination of heat conduction equation (1) governs the heat transfer of heat-generating glass.



(3)

### (2) Convection

Newtonian cooling equation (3) of ambient RT air will transfer heat from the canister surface to surrounding

$$q = hA(Ts - T_{\infty})$$

T<sub>s</sub>: temperature of canister surface( $^{\circ}$ ) A: surface area(m<sup>2</sup>) T: surrounding temperature( $^{\circ}$ ) h: convective heat transfer coefficient (W/m<sup>2</sup> $^{\circ}$ C)



#### Computational analysis<sup>11)</sup>

ANSYS 16.2 Workbench (Mechanical APDL) steady state thermal

Geometry of canister was meshed by 13299 nodes and 7779 elements Volumetric heat-generation was applied to entire glass matrix. Natural convection was applied to all surfaces of canister except for the bottom face.

| Properties                                                      | Cs <sup>+</sup> glass   | Sr <sup>2+</sup> glass  |   |
|-----------------------------------------------------------------|-------------------------|-------------------------|---|
| Specific thermal power (q)                                      | 15.835kW/m <sup>3</sup> | 18.570kW/m <sup>3</sup> |   |
| Thermal conductivity of glass (k) <sup>12)</sup>                | 0.75V                   |                         |   |
| Thermal conductivity of stainless steel                         | <b>14.8W/m</b> ℃        |                         |   |
| Surrounding temperature ( $T_{\infty}$ )                        | <b>27</b> ℃             |                         |   |
| Natural convective heat transfer coefficient (h) <sup>13)</sup> | 5W/                     | m²°C                    |   |
| Effective surface area (A)                                      | 1.24                    | 21m <sup>2</sup>        | 4 |
| Thickness of canister                                           | 6n                      | nm                      |   |



12) http://glassproperties.com/thermal-conductivity

13) https://www.ansys.kr/Uploaded\_Files/2014Icepak/1\_Management\_of\_Electronics\_r1.0.pdf



ANSY

Academic

### **Graphical results**

(1) Cross sectional temperature gradient

 $\begin{array}{l} \mathsf{T}_{\mathsf{g}} \text{ of } \mathsf{Cs^{+} glass(518^{\circ}\mathbb{C}) > T_{\mathsf{Max}} \text{ of } \mathsf{Cs^{+} glass(442.9^{\circ}\mathbb{C})} \\ \mathsf{T}_{\mathsf{g}} \text{ of } \mathsf{Sr^{+} glass(587^{\circ}\mathbb{C}) > T_{\mathsf{Max}} \text{ of } \mathsf{Sr^{2+} glass(514.8^{\circ}\mathbb{C})} \end{array}$ 

# (1) h-k-T diagram

Two curves are correspond to the possible combinations that will increase the temperature up to the value of  $T_{g}$ .

Simulated accident condition was located at  $\mathsf{T}{<}\mathsf{T}_{\mathsf{g}}$  region

Glasses appear to be stable enough from selfheating issues even under the failure of cooling system





- We synthesized alumino-borosilicate glasses for heat-generating cesium and strontium
- Density, glass transition temperature, linear thermal expansion coefficient were measured and results were comparable to typical HLW glass
- Cs<sup>+</sup> and Sr<sup>2+</sup> glasses were chemically durable
- Analysis on the heat load simulation under the failure of the cooling system indicated that maximum temperature inside the canisters are well below the glass-transition temperature of each glass.

