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1. Introduction 

 
Digital radiography projects a three-dimensional 

object into a two-dimensional plane. Therefore, lesions 

can be hidden by normal tissues or the superimposed 

normal tissues can be sometimes misunderstood as 

lesions. To enhance lesion conspicuity in digital 

radiography by removing or reducing the background 

clutter, many researches have been conducted: dual-shot 

dual-energy imaging [1] single-shot dual-energy 

imaging [2,3] and digital chest tomosynthesis [4]. Each 

development has its own disadvantages. For example, 

the double-shot dual-energy imaging is susceptible to the 

motion artifacts because of the time interval between two 

successive exposures [5]. The single-shot dual-energy 

imaging suffers from reduced contrast-to-noise ratio 

performance due to poor spectral separation [2,3,6]. 

Tomosynthesis requires more complex motion 

equipment and may require higher patient dose. 

An alternative tissue-specific imaging technique was 

introduced [7,8,9]. This alternative technique usually 

possesses a filter to generate bone-only images for given 

digital radiographs. Therefore, it provides soft-tissue-

enhanced images from the subtraction of given 

radiographs and filtered bone-only images. Only bone-

suppressed imaging capability is a limitation of the 

method. The filter can be obtained from a machine-

learning algorithm, e.g. artificial neural network (ANN), 

with the dual-energy bone-only images (called ‘teaching’ 

images). We suspect the robustness of the filter may be 

dependent upon the number of teaching images and the 

number of patients from whose radiographs we obtain 

the teaching images. 

In this study, we design an ANN to obtain a bone-

extracting filter from a radiograph, and investigate the 

filter properties with respect to various ANN parameters. 

 

2. Materials and Methods 

 

The ANN can be regarded as an interconnected group 

of units. Fig. 1. shows a graphical model of ANN 

considered in this study. It mainly consists of three layers: 

input, hidden, and output layers. Each layer consists of 

N, M, and L units, respectively. Actually, the input and 

hidden layer respectively require one additional unit as 

  
 

Fig. 1. A simple artificial neural network considered in this 

study. It consists of the input, hidden, and output layers, which 

of each includes N+1, M+1, and L units, respectively. 

 

bias (see below). Each unit represents an artificial neuron 

and lines represent connections (i.e. weights) from the 

output of one neuron to the input of another. In general, 

the output of a neuron is determined (or activated) by an 

activation function: 

 

𝜑(𝜒, 𝜔) = 𝑓(∑ 𝜔𝑗𝜙𝑗(𝜒))𝑗                    (1) 

 

where 𝜒 =  the input signal vector, ω =  the weight, 

𝜙(𝜒) =  fixed non-linear basis functions, and 𝑓 =  the 

activation function. 

For training the network, the final output signal is first 

calculated through the forward direction using the 

relationship, as shown in Eq. (1), and the calculated 

output signal is compared with the given teaching signal. 

Then, the weights are modified to reduce the difference 

between the output and teaching signals. For example, 

the amount of change in weights is determined by 

differentiating the error (i.e. the difference) with respect 

to weights, and which is known as the gradient descent 

method. This sequential process is repeated until it 

converges. The update of weight matrix at the present 

state, 𝑊 (𝑖), can be described with the weight matrix 𝑊 (𝑖−1)
 

and the error 𝜖 (𝑖−1)
 obtained at the previous state: 

 

𝑊(𝑖) ← 𝑊(i−1) − 𝜂
𝜕𝜖(𝑖−1)

𝜕𝑊(𝑖−1)                (2) 
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Fig. 2. Dual-energy images obtained from a commercial fast 

kVp-switching system: (a) high-energy (120 kVp) image, (b) 

bone-enhanced image, and (c) tissue-enhanced image. 

 

where 𝜂  is called the learning rate and it affects the 

convergence speed. Since the weights are modified from 

the output side to input side, this process is called the 

error backpropagation. 

For training the network, dual-energy images were 

obtained for a patient using a commercial system 

(Definium 8000, GE Healthcare, US) as shown in Fig. 2. 

In this preliminary study, the images were re-sized to 

small versions (400 × 400 pixel format) for a 

computational efficiency. The trained network 

performance was evaluated by calculating structural 

similarity index (SSIM) [10] between the soft tissue 

image obtained using the network and the ground-truth 

image obtained from the commercial equipment. 

 

3. Preliminary result 

 

Preliminary results are summarized in Fig. 3. We 

extracted 5,000 subregions in a 21×21 pixel format from 

the lung region in the bone-enhanced dual-energy image 

and we used them for teaching images during training the 

ANN. The resultant bone-enhanced image from the ANN 

nonlinear filter is shown in Fig. 3 (a). From the weighted 

logarithmic subtraction between Fig. 2 (a) and Fig. 3 (a), 

we could obtain the bone-suppressed image as shown in 

Fig. 3 (b). The quality of the bone-suppressed image is 

comparable to the ground truth Fig. 2 (c). 

 

4. Further Study 

 

As shown above, the ANN bone-suppressed imaging 

is promising. The question is that the ANN filter 

determined from a single patient can be universally 

applied to any patient radiographs. The remained further 

study before the meeting includes the followings. 

First, investigation of the general properties of ANN 

nonlinear filters in terms of various parameters such as 

the size of teaching image, the learning rate, the number 

of layers and units, and so on. 

Second, investigation of the robustness of ANN filters 

with respect to the number of patient data. 

To achieve the purpose of this study, the development of 

quantitative numerical and experimental models is in 

progress. 

 

 
 

Fig. 3. (a) Bone-enhanced image using the ANN nonlinear filter, 

(b) bone-suppressed image by applying (a) to chest radiograph. 
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