The Numerical Sensitivity Study of Cold Leg Top Slot Break for ATLAS

2016 한국원자력학회 춘계학술대회 May. 13

성 해 정

- 1. Introduction
- 2. RELAP5 Modeling
- 3. Base Case
- 4. Sensitivity Studies
- 5. Summary

1. Introduction

- Top Slot Break (issued by NRC as draft RAI, ML14134A347)
 - ✓ NRC Concern
 - Loop seal reformation may occur during post-reflood due to deep loop seal design.
 - ✓ Scenario
 - Top slot break at cold leg (SB/MB break size maybe the concern)
 - Primary steam condensation by SG heat transfer or SIP, SIT water flooding (reverse flow to loop seal)
 - Four loop seal reformation occurs (possibly).
 - Pressure increase at the top core region due to the steam release blockage.
 - Core water level decrease.
 - Partial core uncover may occur.
- Objectives for this study
 - ✓ To review the possibilities for loop seal reformation until simultaneous injection of APR1400 using ATLAS.
 - ✓ To evaluate cladding temperature increase during loop seal reformation.
 - ✓ To determined the worst case in terms of loop seal reformation.

2. RELAP5 Modeling (1/3)

Code environments

- ✓ RELAP5/MOD3.3 Patch04
- ✓ Intel Xeon processor under the Microsoft Windows environment

Assumptions

	ATLAS modeling		
Break size for base case	0.1016 m (4 in.)		
Core power	102 % rated power		
Decay heat	ANS73 * 1.2		
Heat loss	Not considered		
Break condition	Top slot break (offtake model)		
Break model	Henry-Fauske model		
SG cool-down operation	Not credit, but MSSVs operate		
SIP	4 SIP		
SIT	4 SIT		

• Break Sizes addressed in the present study are given based on the break size of the APR1400. 4/14

2. RELAP5 Modeling (2/3)

Logic setting

	Set point			
Primary logic				
Cold leg break	300 sec (Break initiation as soon as transient calculation starts.)			
LPP	PT-PZR-01 < 12.48 MPa			
Reactor scram / RCP trip / Turbine trip / MFIV and MSIV close	LPP + 0.0 sec			
SIP on	PT-PZR-01 < 10.7 MPa + 28.0 sec delay			
SIT on	PT-DC-01 < 4.03 MPa			
Secondary logic				
MSSV1,2-01 open MSSV1,2-01 close	PT-SGSD1,2-01 > 8.1 MPa PT-SGSD1,2-01 < 7.7 MPa			
MSSV1,2-02 open MSSV1,2-02 close	PT-SGSD1,2-01 > 8.3 MPa PT-SGSD1,2-01 < 7.9 MPa			
MSSV1,2-03 open MSSV1,2-03 close	PT-SGSD1,2-01 > 8.48 MPa PT-SGSD1,2-01 < 8.05 MPa			
Aux. feed water open Aux. feed water close	LT-SGSDRS2-01 < 2.76 m LT-SGSDRS2-01 > 3.61 m			
Aux. Feed Water Flow rate	0.2 kg/sec			

2. RELAP5 Modeling (3/3)

Sequence of Transient Events

Event	Calculation	Remarks	
Cold leg break	300.0 sec		
Low pressurizer pressure	326.0 sec	PT-PZR-01 < 12.48 MPa	
Reactor scram / RCP trip	326.0 sec	LPP + 0.0 sec delay	
SIP on	384.0 sec	PT-PZR-01 < 10.7 MPa + 28.0 s ec delay	
SIT on	1,198.0 sec	PT-DC-01 < 4.03 MPa	
MSSV1,2-01 open MSSV1,2-01 close	331.0 sec 513.0 sec	PT-SGSD1,2-01 > 8.1 MPa PT-SGSD1,2-01 < 7.7 MPa	
MSSV1,2-02 open MSSV1,2-02 close	-	PT-SGSD1,2-01 > 8.3 MPa PT-SGSD1,2-01 < 7.9 MPa	
MSSV1,2-03 open MSSV1,2-03 close	-	PT-SGSD1,2-01 > 8.48 MPa PT-SGSD1,2-01 < 8.05 MPa	
Aux. feed water open Aux. feed water close	-	LT-SGSDRS2-01 < 2.76 m LT-SGSDRS2-01 > 3.61 m	

3. Base Case (2/3)

- Four loop seal blockage occurs
 - ✓ 2,109 sec ~ 2,278 sec
 - ✓ 2,904 sec ~ 3,200 sec

- ✓ 3,269 sec ~ 5,758 sec
- ✓ 5,843 sec ~
- The characteristics of cladding temperature at peak node
 - Cladding temperature at peak node is intermittently increases during loop seal reformation until 5,843 sec.
 - ✓ Cladding temperature is not continuously increased after 5,843 sec even though loop seal is maintained from 5,843 sec to 9,000 sec.

3. Base Case (3/3)

• The characteristics of accumulated mass into lower plenum

- Accumulated mass into lower plenum is decreased while loop seal is being blocked by safety injection water.
- ✓ However, safety injection water is continuously injected regardless of loop seal reformation.
- The characteristics of void fraction at active top core
 - ✓ Liquid fraction at active top core is maintained over 0.4 regardless of loop seal reformation.
 - $\checkmark~$ It means that core uncover does not occur.

4. Sensitivity Studies (1/4)

Test Matrix

✓ Break size sensitivity

	APR1400 (m)	ATLAS (m ²)		APR1400 (m)	ATLAS (m ²)
Case 1	0.0635 (2.5 in)	1.55546E-5	Case 4	0.2159 (8.5 in)	1.79811E-4
Case 2	0.0762 (3.0 in)	2.23987E-5	Case 5	0.2286 (9.5 in)	2.01588E-4
Case 3	0.1016 (4.0 in)	3.98198E-5			

- ✓ Sensitivity of Break Distance from Vessel
 - C376 (Intermediate Leg), <u>C381</u>, C391, C396 (Vessel)
- ✓ Pressurizer Location Sensitivity
 - C380 (Loop 1A), <u>C381 (Loop 1B)</u>, C480 (Loop 2A), C481 (Loop 2B)

4. Sensitivity Studies (2/4)

Break Size Sensitivity

Time (sec)

4. Sensitivity Studies (3/4)

12/14

4. Sensitivity Studies (4/4)

Pressurizer Location Sensitivity

✓ C381 (Break: Loop 1B)

5. Summary

- Base Case (4.0 in.)
 - ✓ Cladding temperature intermittently increases during loop seal reformation.
 - ✓ However, cladding temperature increasing is limited by core void fraction.
- Sensitivity Studies
 - ✓ Break Size Sensitivity
 - 4 loop seal blockage cases are observed for break sizes ranging from 0.0762 m (3.0 in.) to 0.2286 m (8.5 in.).
 - The results can be categorized into three: 1) no loop seal clearing occurs, 2) loop seal clearing occurs and loop seal is reformed, 3) loop seal clearing occurs but loop seal is not reformed.
 - ✓ Sensitivity of Break Distance from Vessel
 - In terms of loop seal reformation, the break which is adjacent to vessel seems conservative since loop seal reformation lasts from 2,393 sec to 9,000 sec.
 - ✓ Pressurizer Location Sensitivity
 - Pressurizer location does not have an important impact on the loop seal reformation.