

KNS 2016 춘계학술발표회

제 4분고: 핵연료 및 원지력재료, 소재개발

제주 국제컨벤션센터, May. 11-13

Oxidation Behavior of Surface-modified Stainless Steel 316LN in Supercritical-CO₂ Environment

2016. 05. 13

Sung Hwan Kim, Jin Woo Heo, Hyunmyung Kim, Changheui Jang (KAIST)

Nuclear & High Temperature Materials Lab. KAIST 원자력 및 양자공학과

Contents

- 1. Introduction
- 2. Objective
- 3. Material and experimental
- 4. Results and discussion
- 5. Summary and further research

Introduction

KAIS

□ Supercritical-CO₂ (S-CO₂) Brayton cycle

- Cross-cutting power conversion technology
 - Sodium-cooled Fast Reactor (SFR)
 □ Superheated steam Rankine → S-CO₂ Brayton cycle at 500-550°C (20MPa)

Material issues

- Oxidation and carburization in S-CO₂ environment
 - Loss of load bearing area
 - Integrity of heat exchanger and turbomachinery
 - Mechanical property degradation

Prototype Gen IV Sodiumcooled Fast Reactor (PGSFR)

- Pool-type reactor (150MWe)
- Core in/out temperature → 390/545°C
- Liquid sodium coolant
- Superheated steam Rankine cycle
 - \rightarrow S-CO₂ cycle considered as replacement

Nuclear & High Temperature Materials Lab.

Schematic image and operating conditions of PGSFR

3

Introduction

Stainless steel 316LN

- Candidate material for key components and structures in SFR
- Comparatively poor oxidation behavior in S-CO₂ environment

 \rightarrow Other various candidate materials considered

• Cr-rich oxide spallation followed by thick Fe-oxide formation

→ Necessary to improve oxidation behavior of SS 316LN

▲ Weight gain of candidate materials after corrosion in S-CO₂ at 650°C (20MPa) up to 3000h [1]

Spallation 100µm Fe oxide 4µm

▲ Corrosion behavior of 316SS in S-CO₂ at 650°C (20MPa) for 3000h [2]

▲ SEM micrograph of oxide surface of SS 316LN after exposure in S-CO₂ at 650°C (20MPa) for 1000h [3]

Introduction

Alumina (Al₂O₃)

• Various transitional phases depending on temperature

 $\begin{array}{ccc} 500^{\circ}\text{C} & 750^{\circ}\text{C} & 900\text{-}1000^{\circ}\text{C} \\ \gamma\text{-}\text{AlO(OH)} \xrightarrow{} \gamma\text{-}\text{Al}_2\text{O}_3 \xrightarrow{} \delta\text{-}\text{Al}_2\text{O}_3 \xrightarrow{} \theta\text{-}\text{Al}_2\text{O}_3 \xrightarrow{} \alpha\text{-}\text{Al}_2\text{O}_3 \end{array}$

- α -Al₂O₃: superior oxidation and carburization resistance
- Al content over 4-5 wt.% for continuous Al₂O₃ layer formation

Surface-modification

- Diffusion coating of SS 316LN with AI
 - Surface enrichment \rightarrow promote Al₂O₃ formation
- Past work on Ni-base superalloy
 - β-NiAl surface layer formation
 - Oxidation in air (900°C 1000h)

 \Box Transient oxidation behavior \rightarrow NiAl₂O₄, α -Al₂O₃

▲ Weight gain curves of as-received and IDHTed Alloy 617 oxidized in air (900°C) up to 1000h [1]

Nuclear & High Temperature Materials Lab.

5

Objective

Improvement of oxidation resistance of SS 316LN in S-CO₂ environment via surface-modification

Surface-modification

Al coating via PVD

Target	Base pressure	Working pressure (Ar)	RF power	Duration	Coating Thickness
AI (99.999%)	$\leq 2.0 \times 10^{-6}$ torr	0.7×10 ⁻⁴ torr	200 W	4 h	~ 8 µm

- IDHT: 600°C 0.5h + 1000°C 0.5h (vacuum, $\leq 2.0 \times 10^{-6}$ torr)
- Pre-oxidation: 900°C 1h (He, 99.999% purity)

CO₂ corrosion test

- Once-through type quartz, three-zone heater
- CO₂: 99.999% purity with flow rate of 150 sccm
- Exposure to CO₂ at 650°C 0.1MPa for 100h

▲ Cross-sectional SEM micrograph of Al-coated SS 316LN

Nuclear & High Temperature Materials Lab.

Ν

Material Cr С Si Fe Ni Мо Mn **SS 316LN** Bal. 18.9 13.9 0.03 2.8 1.9 0.6 0.16

7

□ Microstructure of IDHTed SS 316LN

- Al-rich surface layer formed as result of inter-diffusion
 - Al content generally above 5 wt.% in aluminized region
- Distinct regions

KAIST

- I: Al-rich surface area (Al > 10 wt.%)
- II: Ni-Al rich intermetallic
- III: Al-rich area (Al > 4 wt.%) with AIN
- IV: Substrate

▲ Cross-sectional SEM micrograph of IDHTed SS 316LN

wt. %	Fe	Cr	Ni	AI
Point 1	41.6	20.2	11.7	12.0
Point 2	34.9	17.8	19.0	15.8
Point 3	17.9	8.7	38.7	24.3
Point 4	44.3	28.7	6.3	5.4
Point 5	40.9	29.4	10.1	4.4

□ Microstructure of IDHTed SS 316LN

- Al preferentially forming intermetallic with Ni \rightarrow Nickel aluminide (β -NiAl)
- Comparative enrichment of Fe and Cr in Ni-depleted areas

▲ STEM and elemental mapping images of IDHTed SS 316LN

□ Microstructure of pre-oxidized SS 316LN

- Pre-oxidation performed to form α -Al₂O₃
 - Operational temperature (~ 550°C) not high enough for formation of α-Al₂O₃
- XRD analysis: mainly $Fe(Cr_2O_4) \rightarrow Fe$, Cr enriched areas at surface
 - α -Al₂O₃ peaks undetected \rightarrow comparatively too thin to be detected
- Cross-sectional BSE micrograph reveal oxide inner layer of different composition than outer layer
 1: Al (#00-004-0787) 2: AlNi (#00-044-1188)
 - \rightarrow possibly α -Al₂O₃ layer

▲ Cross-sectional SE/BSE micrographs of pre-oxidized SS 316LN

▲ XRD analysis of surface-modified SS 316LN

□ Oxidation behavior in CO₂ environment

- Weight change
 - As-received > IDHTed > Pre-oxidized
 - Necessary to evaluate **extent of pre-oxidation** → weight gain & oxide thickness

▲ Weight change after exposure to CO₂ (650°C 0.1MPa 100h)

Oxidation behavior in CO₂ environment

- XRD analysis
 - As-received, IDHTed \rightarrow Fe₂O₃ formation

 \Box Weight gain difference \rightarrow detailed oxide analysis necessary

Pre-oxidized \rightarrow No Fe₂O₃, Al₂O₃ formation \rightarrow low weight gain

Summary and further research

Summary

- SS 316LN was coated with AI and heat-treated (IDHT)
 - Development of Al-rich surface layer (above 4-5 wt.% Al)
 - Nickel aluminide (NiAl), AIN formation
- IDHTed SS 316LN was pre-oxidized
 - Formation of α -Al₂O₃ prior to CO₂ exposure
- After CO₂ exposure at 650°C for 100h
 - Weight gain: As-received > IDHTed > Pre-oxidized

 \rightarrow May be attributed to pre-formation of Al₂O₃

- CO₂ of 650°C not high enough temperature for formation of protective α-Al₂O₃

Nuclear & High Temperature Materials Lab.

➔ Pre-oxidation procedure necessary for significantly improved oxidation behavior

Summary and further research

Concerns

- Diffusional loss of AI in longer durations
 - Insufficient AI content to maintain stable AI₂O₃ layer
 - Formation of brittle aluminides in affected bulk
- Carburization resistance

Further research

- Detailed analysis of CO₂ (650°C 100h) exposed specimens
- Longer exposure times
- Evaluation of co-deposited Ni, Al coating performance
 - Diffusion barrier for AI at surface
- Corrosion tests in S-CO₂ (20MPa) environment
 - Comparison with CO_2 (0.1MPa) results
- Assessment of carburization resistance
- Mechanical property evaluation

Energy for Earth !!

Thank you!

