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1. Introduction

In 2012, KAERI launched a project to construct a
new research reactor in KiJang district. U-7wt%Mo/Al-
5wt%Si dispersion fuel with 8gU/cm® is chosen to
achieve more efficiency and higher performance than
the conventional U;Si, fuel. As part of the fuel
qualification program for the KiJang research reactor
(KJRR), three irradiation tests with mini-plates are on
the way at the High-flux Advanced Neutron Application
Reactor (HANARO). The first test among three
HANARO Mini-Plate Irradiation tests (HAMP-1, 2, 3)
has completed.

PLATE code has been initially developed to analyze
the thermal performance of high density U-Mo/Al
dispersion fuel plates during irradiation [1]. We
upgraded the PLATE code with the latest irradiation
results which were implemented by corrosion, thermal
conductivity and swelling model.

Fuel performance analysis for HAMP-1 was
conducted with updated PLATE. This paper presents
results of performance evaluation of the HAMP-1.

2. Input file creation for HAMP-1

Input file is created using irradiation history, burnup
and heat flux data in HAMP-1 report [2]. Total
irradiation time is 111.4 days during 92 to 95 cycle of
HANARO. To perform the evaluation with Plate code,
approximate 1 day per a time step was applied. Particle
size distribution for HAMP-1 is shown in table 1.

Table 1 Representative particle size distribution

for HAMP-1
Particle diameter (1 m) Mass fraction (%)
under 45 11.00%
45 5.00%
53 27.00%
63 22.00%
75 24.00%
90 9.00%
106 1.00%
125 1.00%

2. PLATE code evaluation

The calculations in this paper are to provide
preliminary analysis of the fuel performance of the
HAMP-1 experiment, particularly the third plate of total
8 plates in the experimental set up. The analysis
provides the thermal behavior in the centerline and
surface of the plate, oxidation, and fuel swelling
behavior.

Fig. 1 shows fuel meat volumetric heat generation
rate during irradiation.

10000
9000
8000 =
7000 ~—
6000 ‘\
5000 ~——
4000
3000
2000
1000

0
0 20 40 60 80 100 120
Time Step (days)

VHGR(W /cm?)
/

Fig. 1 Fuel meat volumetric heat generation rate during
irradiation

2.1 Fuel meat swelling

Kim’s swelling model [3] was updated in PLATE
code. The result of the meat swelling is shown in Fig 2.
The meat swelling surfaced and monotonically
increased after 1.1x10%" fission density because of
porosities. As shown in Fig. 2, the calculated values of
the average fuel meat swelling of HAMP-1 are about
13.9%. Fig. 3 also shows fuel meat swelling distribution
of the fuel zone calculated using plate code at EOC of
each cycle. The fuel zone (fuel meat area) of fuel plate
was divided into 4x7 mesh (Transverse 4 nodes in width
direction and axially 7 nodes in length direction).
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Fig. 2 Fuel meat swelling vs Fuel particle fission density
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Fig. 3 Estimated fuel meat swelling distribution at EOC of

each cycle
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2.2 Thermal conductivity of the fuel meat

New thermal conductivity model for U-Mo/Al
dispersion fuel [4] was augmented in PLATE code. The
effective thermal conductivity of the fuel meat is
calculated to be 0.65W/cm-K at 298 K.
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Fig. 4 Thermal conductivity vs fuel particle fission density

2.3 Fuel meat centerline temperature

Fig. 5 and 6 show the fuel centerline temperature of
the fuel zone of 4x7 mesh calculated at BOC and EOC
of each cycle. The maximum peak centerline
temperature is about 139.2 °C at a burnup of around
11.4 % U235 depletion. Up to a maximum burnup, the
fuel temperature was kept below the design limit of
200°C during the irradiation test.
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Fig. 5 Fuel centerline temperature calculated at BOC of
each cycle
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Fig. 6 Fuel centerline temperature calculated at EOC of
each cycle

2.4 Cladding corrosion

Kim-Hofman corrosion model [5] also was updated
in PLATE code. Fig. 7 shows the corrosion thickness at
the position with peak heat flux and fission density. The
corrosion thickness steeply increased during the first
cycle and growth rate gradually was reduced. The
maximum boehmite layer thickness is predicted to be
about 22.7um. Fig. 8 shows corrosion thickness of the
fuel zone of 4x7 mesh calculated at EOC of each cycle.
The boehmite corrosion layer thickness was evaluated
to be in the range of 10.5 to 22.7 um at the end of
irradiation.
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g. 7 Corrosion thickness during irradiation
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Fig. 8 Corrosion thickness estimation at each EOC

3. Conclusions

The PLATE code was updated with new latest models.
The fuel performance for HAMP-1 was analyzed with
the updated PLATE code.

The maximum fuel temperature was obtained 136C,
which is far below the preset limit of 200°C for the
irradiation test. The meat swelling and corrosion
thickness was also confirmed that the developed fuel
would behave as anticipated.
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