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1. Introduction 

 

A supercritical carbon dioxide (S-CO2) Brayton cycle 

is being considered as a promising power conversion 

system that shows promise for a wide range of 

applications, such as next generation nuclear system, 

high temperature fuel cells, combined cycle power plant, 

concentrated solar power, etc [1-5]. It was identified 

that controlling CO2 compressor operation near the 

critical point is one of the most important issues to 

operate a S-CO2 Brayton cycle with a high efficiency. 

Despite the growing interest in the S-CO2 Brayton cycle, 

a few previous research on the transient analysis of the 

S-CO2 system has been conducted previously [6-8]. 

Moreover, previous studies have some limitation in the 

modelled test facility, and the experiment was not 

performed to observe specific scenario. The KAIST 

research team has conducted S-CO2 system transient 

experiments with the CO2 compressing test facility 

called SCO2PE (Supercritical CO2 Pressurizing 

Experiment) at KAIST In this study, authors use the 

transient analysis code GAMMA (Gas 

Multidimensional Multicomponent mixture Analysis) 

code for analyzing the experiment. 

Two transient scenarios were selected in this study; 

over cooling and under cooling situations. The tests 

were conducted in the SCO2PE by decreasing or 

increasing the mass flow rate of cooling water line of 

SCO2PE. Before the whole SCO2PE loop is simulated, 

major components, the compressor and the heat 

exchanger, were separately modeled.  

 

2. The modeling of SCO2PE with GAMMA code 

 

Main components of SCO2PE, the canned motor type 

compressor and the printed circuit type heat exchanger, 

need to be separately modelled with the information 

from the SCO2PE before the loop was simulated. The 

modelled components were verified with the 

experimental data, and then the whole SCO2PE loop 

was finally modelled as shown in Fig. 1. The figure 

shows the nodalization of the facility with the steady-

state operating condition comparison between the 

experimental data and GAMMA analysis at each point, 

the compressor inlet and outlet, and the heat exchanger 

inlet. The modelling result shows that the GAMMA 

code can simulate the SCO2PE condition under steady-

state quite well compared with the experimental data. 
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Fig 1. Nodalization of SCO2PE loop for GAMMA code 

and the steady-state operating condition comparison 

 

3. Validation of the GAMMA code with SCO2PE 

data 

 

The experimental tests were performed under the 

selected scenarios by adjusting the cooling water flow 

rate over time while monitoring the changes in operating 

condition. 

 

3.1 Under cooling situation 

 

The cooling water decrease case (cooling water 

0.1→0 kg/s) was conducted without any specific 

problems not only for the experiment, but also for the 

GAMMA code analysis. Fig. 2 shows that the cooling 

water and CO2 mass flow rates variation versus time. 

Fig. 3 and 4 separately represent the pressure and 

temperature comparisons between the GAMMA 

analysis and experimental data in accordance with the 

cooling water variation in Fig. 2. 
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Fig 2. Transient mass flow rate data comparison 

between experiments and GAMMA code for transient 

state (Under cooling scenario) 
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Fig 3. Transient pressure data comparison between 

experiments and GAMMA code for transient state at the 

CO2 side of SCO2PE (Under cooling scenario) 
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Fig 4. Transient temperature data comparison between 

experiments and GAMMA code for transient state at the 

CO2 side of SCO2PE (Under cooling scenario) 

 
3.2 Over cooling situation 

 

In case of the cooling water rise scenario, since the 

operating condition of the compressor inlet is quite 

close with the critical point of CO2, the compressor 

operation goes through the 2-phase condition of CO2. 

It is noteworthy that although the loop condition 

moved through the phase change during the experiment, 

there were no particular noticeable indications such as 

excessive noise or unusual vibration, etc. However, the 

transient analysis could not be carried out when the 

cooling water mass flow rate increases about the twice 

(0.10→0.21 kg/s) of the steady state value due to errors. 

Fig. 5 shows the T-s diagram of the experimental data 

and GAMMA analyses results for two transient 

scenarios at the compressor inlet.  
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Fig 5. The T-s diagram of the experiment and GAMMA 

analyses according to the transient scenarios at the 

compressor inlet point 

 

4. Conclusions 

 

The S-CO2 system transient experiment and analysis 

were conducted with the S-CO2 compressing test facility 

in KAIST, SCO2PE, and the gas system transient 

analysis code, GAMMA. The selected transient 

scenarios are related with the cooling system 

performance change; the reduction of cooling water 

flow rate event and the increased cooling water flow 

rate case. The selected transient situation is of particular 

interest since the compressor inlet conditions start to 

drift away from the critical point of CO2. 

The results represent that the GAMMA code can 

simulate the S-CO2 test facility, SCO2PE. However, as 

shown in the cooling water flow rate increasing scenario, 

the GAMMA code shows calculation error when the 

phase change occurs. Furthermore, although the results 

of the cooling water flow rate decrease case shows 

reasonable agreement with the experimental data, there 

are still some unexplained differences between the 

experimental data and the GAMMA code prediction. 

To reduce the differences and remove the 2-phase 

error issue, the update of GAMMA code is necessary in 

the future. 
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