Analysis of steam condensation in the presence of noncondensable gases using MARS-KS code

Hyeon-mi Bang^a, Yeon-Gun Lee^{a*}

^a Department of Nuclear and Enerergy Engineering, Jeju National University, Jeju, The Republic of Korea *Corresponding author: yeongun2@jejunu.ac.kr

Introduction	Results
 Condensation One of the important phenomena in the heat transfer process The steam condensation is used as a heat removal process in safety systems such as the PCCS. In the presence of a noncondensable gas 	 Wall temperature for 4.5-atm vessel pressure ⁴⁰⁰ ^{4.5} atm ^{4.5} atm ⁵⁰⁰ ³⁶⁰ ⁹⁰⁰ ³⁶⁰ ⁹⁰⁰ ⁹⁰⁰
 Disturb the condensation of the steam Several experimental studies have been performed Dehbi performed experiment to determine the dependence of the condensation heat transfer, pressure, wall temperature subcooling, tube length, and the noncondensable gas ratio of the mixture. 	the experiment of Dehbi for bulk temperature and air mass fraction along the tube, unlike the case (b). Take the case (a) to compare

Objective

- Simulate the experiment of Dehbi by MARS-KS code
- To verify the condensation model of MARS-KS code

Condensation Model of MARS-KS

- ✤ Heat flux due to condensation of steam toward the interface of liquidsteam $q''_{v} = h_{m}h_{fgb}\rho_{vb} \ln \left(\frac{1-\frac{P_{vi}}{P}}{1-\frac{P_{vb}}{P}}\right)$
- Heat flux from the liquid film to the wall

 $q_l'' = h_c \left(T_{vi} - T_w \right)$

Assuming the initial wall temperature, iterate the calculation to satisfy following equation

$q''_v = q''_l$

Obtained by iterative calculation heat flux is

 $q'' = h_c \left(T_{wall} - T_{vb} \right)$

✤ In this study, heat transfer coefficient is calculated by using the control variable as : $h_c = \frac{q''}{(T - T)}$

data of Dehbi's experiment with result of calculation

Bulk temperature for 4.5-atm vessel pressure

Distance from the bottom of the tube (m)

Heat transfer coefficient

Adjusting the boundary conditions
 to be similar wall temperature of calculation with data of Dehbi's experiment

calculate the heat transfer coefficient

(wall vb)

Condensation experimental apparatus by Dehbi

Schematic of the steam condensation experiment.

- Stainless steel vessel
- Height : 4.5 m
- Diameter : 0.45 m
- Maintain constant steam pressure & temperature
- Cooper pipe (heat transfer tube)
 - Height : 3.5 m
- Diameter : 0.038 m
- Coolant : supplied into the bottom

MARS-KS code nodalization

- Heat structure
- Consists of 10 volumes
- Heat transfer occurs only

Conclusion and Further works

MARS-KS nodalization of the steam condensation experiment.

Boundary conditions

- Steam mass flow rate
 - $\dot{m} = Q(h_g h_f)$ by time-dependent junction
- Coolant mass flow rate

experiment

: Reynolds number < 1500

- Air mass fraction
 - Modified the boundary conditions
 - Setting to be similar Air mass fraction

Heat transfer coefficient

- Heat transfer coefficient of MARS-KS calculation increases along the pressure increment, however, is lower than Dehbi's experiment.
- Result of MARS-KS is more conservative than data of Dehbi.
- Condensation heat transfer Model of MARS-KS code should be modified.

Further works

- Implement the modified condensation heat transfer model for the accuracy of MARS-KS code
- Simulate the experiment of JNU by MARS-KS code

Korean Nuclear Society Spring Meeting, Jeju, Korea, May 11-13, 2016