The Influence of Severe Nuclear Accidents on National Nuclear Decommissioning Decisions

13 May 2016 KNS Young A Suh, Carol Hornibrook, Man Sung Yim

> Nuclear Environment & Nuclear Security Lab Department of Nuclear And Quantum Engineering Korea Advance Institute of Science and Technology dreameryounga@kaist.ac.kr

> > Department of Nuclear and Quantum Engineering

Nuclear Energy Environment and Nuclear Security Laboratory

Contents

- Introduction
- Purpose/ Originality of this study
- Research approaches
- Statistical Results of the Hypothesis
- Case studies
- Conclusions and Future work

Introduction

World NPPs operation status and life extension

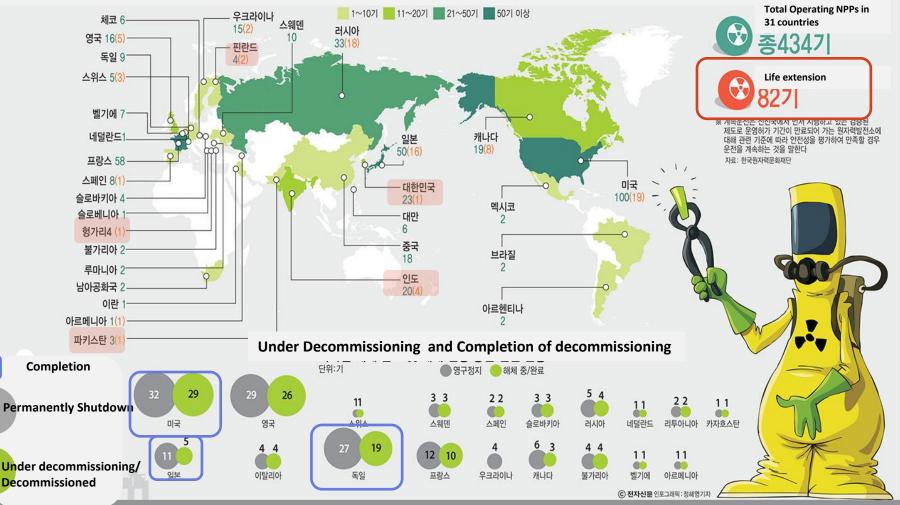
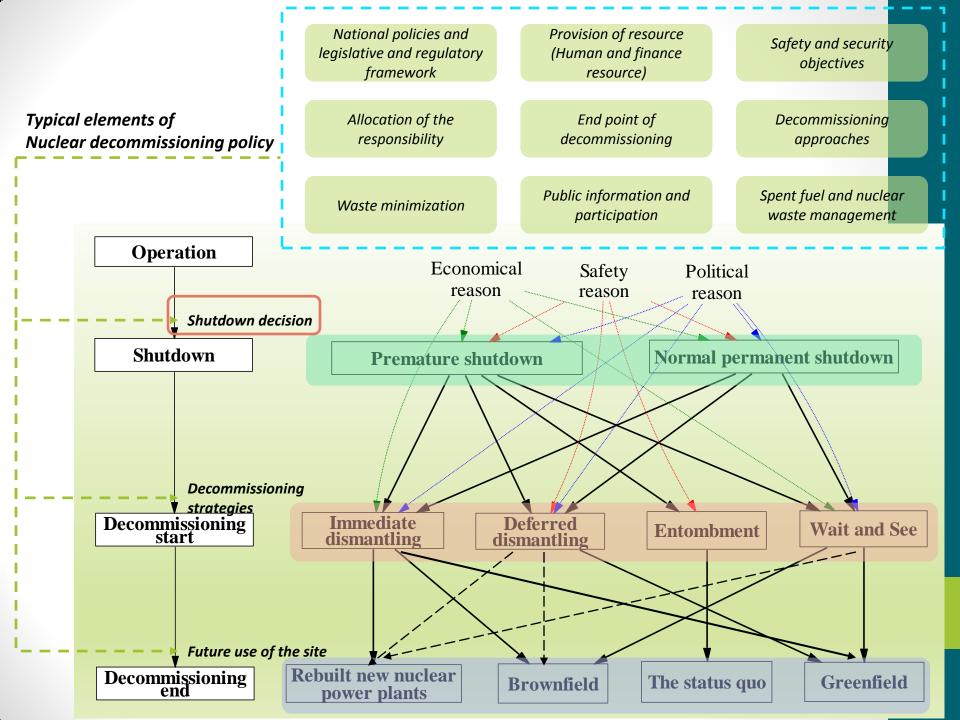


Figure 1. World NPP status and decommissioning status (http://www.etnews.com/)

- In case of commercial NPPs, only 18 countries have direct decommissioning experience.
- Only 3 of those countries completed some of their NPP decommissioning projects.

Imagine you are a policymaker


Example of 162 data set

A	В	С	D	E	F	G	Н	Ι	J
# 1	Country	Unit reactor	Shut down [1]	Specific shutdown reason [2]	Shutdown reason in this paper	Decommissiong strategy	Current status on NPP site	Site reuse plan or already reused	Note
1	Armenia	Metsamor 1	1989	Political decision	Political decision	SAFESTOR	Undergoing Decommissioning	New NPP	Earthquake, Russian reactor
2	Belgium	BR-3	1987	Fulfilled their purpose	Economical decision	DECON	Decommissioned	Greenfield	-
3	Bulgaria	Kozloduy 1	2002	Political decision	Political decision	SAFESTOR	Decommissioned	Brownfield site	Gas dispute between Russia and Ukraine and resulting power shortages in the region
4	Bulgaria	Kozloduy 2	2002	Political decision	Political decision	SAFESTOR	Decommissioned	Brownfield site	1993 agreement between the European Commission and the Bulgarian government
5	Bulgaria	Kozloduy 3	2006	Political decision	Political decision	SAFESTOR	Undergoing Decommissioning	Brownfield site	-
6	Bulgaria	Kozlođuy 4	2006	Political decision	Political decision	SAFESTOR	Undergoing Decommissioning	Brownfield site	-
7	Canada	Douglas Point	1984	Fulfilled their purpose & Economic reason	Economical decision	SAFESTOR	Partially Decommissioned	Restricted area	Storage with surveillance
8	Canada	Gentilly 1	1977	Fulfilled their purpose & Technical reason	Economical decision	SAFESTOR	Undergoing Decommissioning	Greenfield	-
9	Canada	Gentilly 2	2012	Fulfilled their purpose & Economic reason	Economical decision	SAFESTOR	Preceding Decommissioning	Unknown	A decommissioning process will proceed over a period of 50 years
10	Canada	PICKERING-2	2007	Economic & Technical reason	Economical decision	SAFESTOR	Preceding Decommissioning	Not Decided	"cold standby" Decommissioning to begin in 2020, Site reuse idea: production of isotopes with building a cyclotron
11	Canada	PICKERING-3	2008	Economic & Technical reason	Economical decision	SAFESTOR	Preceding Decommissioning	Not Decided	"cold standby" Decommissioning to begin in 2021, Site reuse idea: production of isotopes with building a cyclotron
12	Canada	Rolphton NPD	1987	Fulfilled their purpose	Economical decision	SAFESTOR	Partially Decommissioned	Schoolhouse Museum	-
13	France	Super Phenix	1997	Political decision	Political decision	SAFESTOR	Undergoing Decommissioning	Not Decided	-
14	France	Bugey 1	1994	Fulfilled their purpose	Economical decision	SAFESTOR	Undergoing Decommissioning	Not Decided	-
15	France	Chinon A1	1973	Fulfilled their purpose	Economical decision	SAFESTOR	Partially Decommissioned	Museum	-
16	France	Chinon A2	1985	Fulfilled their purpose	Economical decision	SAFESTOR	Undergoing Decommissioning	Not Decided	-
17	France	Chinon A3	1990	Ran approximately full-term	Economical decision	SAFESTOR	Undergoing Decommissioning	Not Decided	-
18	France	Chooz A	1991	Fulfilled their purpose	Economical decision	DECON	Decommissioned	Greenfield	-
19	France	Brennilis EL-4	1985	Fulfilled their purpose	Economical decision	SAFESTOR	Undergoing Decommissioning	Not decided	Site reuse optons: Industrial complex or greening, 12years(1967~1979)
20	France	Marcoule G-1	1968	Fulfilled their purpose	Economical decision	SAFESTOR	Undergoing Decommissioning	Science museum	-
21	France	Marcoule G-2	1980	Fulfilled their purpose	Economical decision	SAFESTOR	Undergoing Decommissioning	Science museum	-
22	France	Marcoule G-3	1984	Fulfilled their purpose	Economical decision	SAFESTOR	Undergoing Decommissioning	Science museum	-
23	France	Phenix	2010	Ran approximately full-term	Economical decision	DECON	Preceding Decommissioning	Unknown	-
24	France	St Laurent A1	1990	Fulfilled their purpose	Economical decision	SAFESTOR	Undergoing Decommissioning	Not decided	-

The range of this study

Typical elements of nuclear **Representative indicators** General factors for selection of **Historical timeline** decommissioning policy decommissioning strategies (Independent variables) (Independent variables) National policies and Country's capacity of legislative and high technology National policies and regulatory framework innovation regulatory framework **Overall time periods** National nuclear Country data (23 samples) Waste minimization energy policy Suitable technologies and techniques Public information and Public perception St.Lucens accident participation (INES 5) Social impacts and Availability of funds of stakeholder Allocation of the decommissioning involvement responsibility TMI accident (INES 5) Knowledge Availability of End point of repository for waste management and decommissioning human resources **Dependent variable 1** Chernobyl accident Financial resources/ (INES 7) Provision of resource Cost of implementing Permanently shutdown a strategy Reactor units data (162 samples) reason Safety and security The end of cold war Health, Safety and objectives Site reuse options **Environmental impact** Spent fuel and nuclear Operation history of waste management Spent fuel and waste Fukushima accident nuclear reactors (INES 7) management system Decommissioning approaches (Strategies) Reactor types and size

Independent variable 1

Purpose and Originality of this stud

Objective of this study

 To examine the influence of severe nuclear accidents on national decisions for nuclear decommissioning

Limitation of previous studies

- No studies address the influence of severe nuclear accidents on national decisions on nuclear decommissioning options
 - Previous studies address: change of public acceptance, nuclear phase-out policy
- No studies address the influence of major historical events on national decisions regarding nuclear decommissioning options.

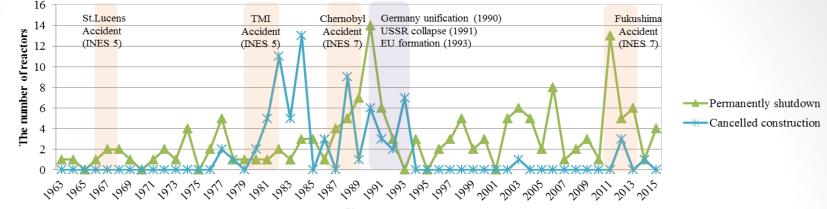
Hypothesis

• The number of NPPs relegated to permanent shutdown increase in response to historical incidents such as nuclear severe accidents and major historic events (i.e., end of cold war).

THE END OF THE COLD WAR

Research approaches

Data collection


- The change in the number of World NPPs by year
 - Cancelled construction → Nuclear phase-out policy
 - Permanently shutdown→ National decision on nuclear decommissioning
- The empirical equation
 - Impact of Severe Accident = $\rho(-(the year-1 year after the accident occured) \times \rho(-\frac{1}{INES})$
 - Difficulties for measuring impact of severe accident
 - International nuclear event scale(INES)
 - Time
 - According to a human cognitive paper, the memory time of the public is generally 5-7 years.
 - Impact of historical event=1, event happened in year 1.

Statistical analysis using STATA

 The Pearson's correlation coefficient (r) is a technique for investigating the relationship between two quantitative variables.

Results Statistical analysis

Figure 2.Permanently Shutdown and Cancelled Construction of Nuclear Power Reactors by Year

	Year					
	Cancelled Construction					
	P-value (two side)	t value	R (Pearson coefficient)			
St. Lucens	0.354	-0.934	-0.117			
ТМІ	0.049	2.005	0.245			
Chernobyl	0.093	1.706	0.210			
The end of cold war	0.005	2.914	0.345			
Fukushima	0.902	-0.124	-0.015			
	The number of world NPPs (Shutdown)					
	P-value (two side)	t value	R (Pearson coefficient)			
St. Lucens	0.425	-0.803	-0.100			
TMI	0.342	-0.957	-0.119			
Chernobyl	0.058	1.933	0.237			
The end of cold war	0.007	2.781	0.331			
Fukushima	2.83e-4	3.633	0.416			

Table 2. Summary of Results of Pearson Coefficient Test

- Positive correlations with historical events and NPP construction cancellations or permanently shutdown NPPs were revealed.
- It means historical accidents can influence nuclear phase-out policy.
- Severe accidents and changes in the international political situation can result in the shutdown of NPPs and their eventual decommissioning.

Case studies

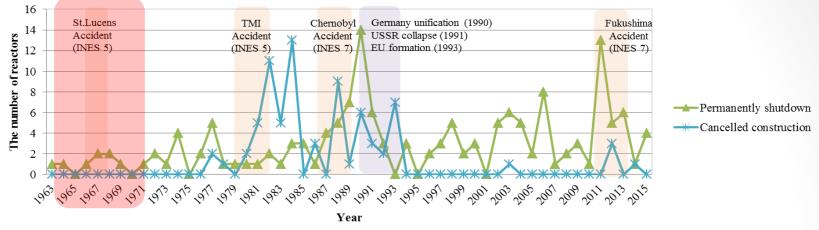
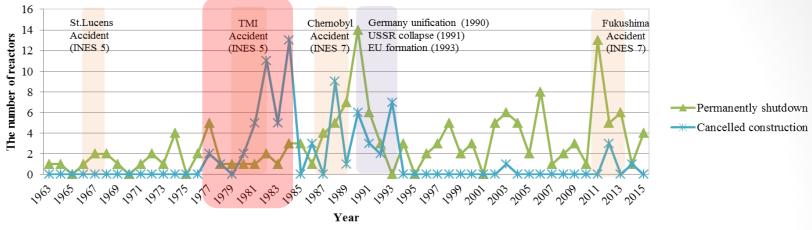
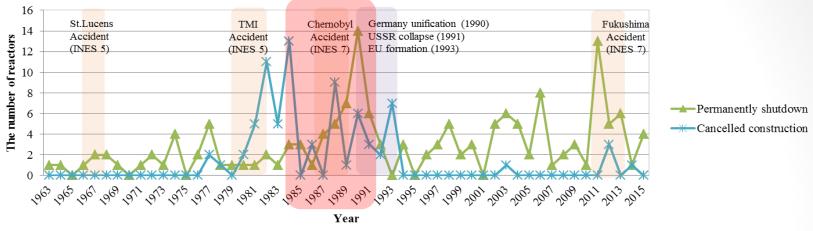
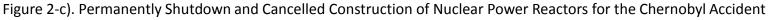



Figure 2-a). Permanently Shutdown and Cancelled Construction of Nuclear Power Reactors for the St. Lucens Accident

St. Lucens Accident: little correlation

- "localized phenomenon"
- Lack of information exchange
 - No 'Convention on Early Notification of a Nuclear Accident'
- However, we still could not say 'zero correlation' with St. Lucens.
 - Switzerland decided on a nuclear phase out policy at that time.
 - Nearby Austria, halted construction of an almost completed NPP because of a public referendum.


Case studies



- TMI Accident: little correlation with shutdown but direct correlation with cancelled construction
 - A local resident exodus phenomenon: increase in serious antinuclear activities
 - Former president Jimmy Carter's Anti-nuclear bomb policy
 - Increased power of environmentalists
 - Operating plants relatively new, no reactors in design obsolescence status

Case studies

- Chernobyl accident: Positive correlation with both shutdown and cancelled construction
 - Several European countries (Italy, Finland, Switzerland and Sweden) decided to restrict the use of nuclear energy by halting construction and shutting down nuclear reactors.

Case studies

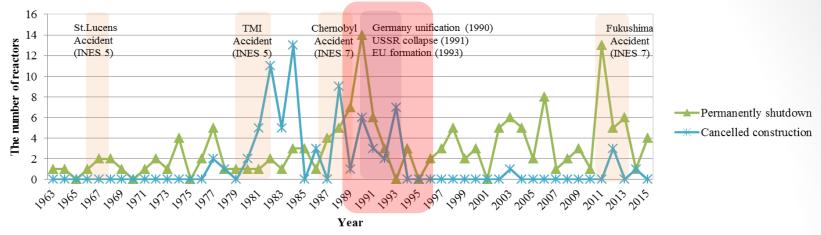
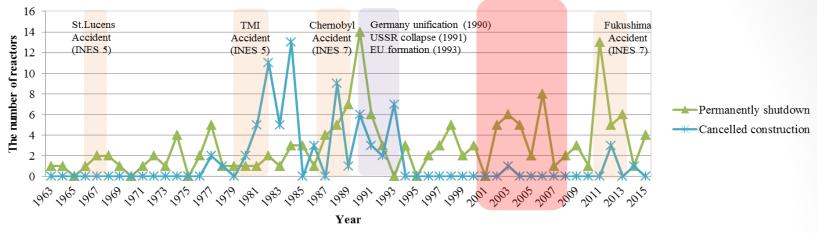
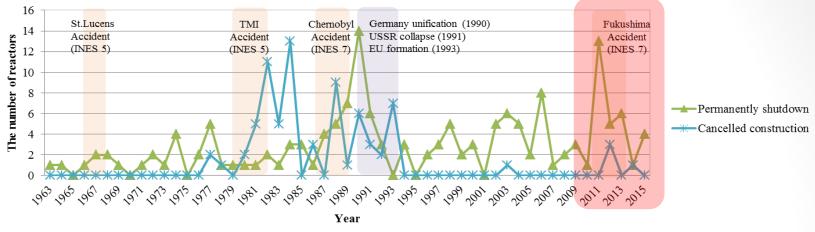


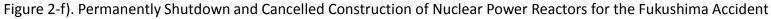
Figure 2-d). Permanently Shutdown and Cancelled Construction of Nuclear Power Reactors for the End of the Cold War

Historical events relating to the end of the cold war

- The anti-nuclear movement grew in Europe between 1990-1993, negative attitudes toward nuclear power plants was expanded.
- German unification occurred in 1990 which led to the permanent shut down of East German reactors.
- Several prototype reactors were approaching their lifetime limits.
- With EU formation, the European Commission (EC) requested an agreement which contained a clause for premature shutdown of Russian types of reactors like VVER and RBMK.
 - Bulgaria, Lithuania and Ukraine

Case studies


Figure 2-d). Permanently Shutdown and Cancelled Construction of Nuclear Power Reactors for Nuclear Renaissance

Nuclear renaissance: In response to climate change

- Only one cancellation of NPP construction plans : SINPO-1 at North Korea in 2004
 - To prevent the expansion of nuclear weapon capability
- Several shutdowns of NPPs because of economic reasons
- Many countries adopting phase-out nuclear energy policy, such as Italy, Belgium and Switzerland, changed their nuclear energy policy to re-start NPPs.

Case studies

- Fukushima accident: Positive correlation with the number of shutdown NPPs
 - Nuclear phase-out countries (Switzerland, Italy, Germany, and Belgium) and Japan decided to shutdown all of their NPPs.
 - However, it seems premature to make judgment on these results as the time period is still too short to correlate world trends with this event.

Conclusions

- Question: Did the nuclear accident(s) have an impact on nuclear decommissioning policy decisions?
 - Answer: Historical event will have an Indirect impact on decommissioning policy decisions
- Hypothesis: The number of NPPs relegated to permanent shutdown increase in response to historical incidents such as nuclear severe accidents and major historic events (i.e., end of cold war). "True"
 - National decision on shutdown might be depended on national circumstances
 - Nuclear phase-out policy
 - Anti movements
 - Their NPPs' design lifetime
 - Self reliance of energy
- Future studies address the general factors for determining nuclear decommissioning policy and strategies such as a country's nuclear energy policy, reactor type and operation periods.

HANK YOU

7

**

388

UP

References

- [1] Samseth, J., Banford, A., Batandjieva-Metcalf, B., Cantone, M.C., Lietava, P., Peimani, H. and Szilagyi, A., Closing and Decommissioning Nuclear Power Reactors. UNEP Year book, pp.35-49, 2012.
- [2] Csereklyei, Zsuzsanna. "Measuring the impact of nuclear accidents on energy policy." Ecological Economics 99:121-129, 2014.
- [3] Nohrstedt, D., The politics of crisis policymaking: Chernobyl and Swedish nuclear energy policy. Policy Studies Journal, 36(2), pp.257-278, 2008.
- [4] Onwuegbuzie, A. J., Daniel, L., & Leech, N. L., Pearson productmoment correlation coefficient. Encyclopedia of Measurement and Statistics, vols, 1, 750-755, 2007.
- [5] Hack Sik Lee and Jihoon Yim, Social science research methodology (Korean), Giphyunjae, pp.170-176, 2014.
- [6] European Commission Co-ordination Network on Decommissioning (EC-CND), Analysis of the Factors Influencing the Selection of Strategies for Decommissioning of Nuclear Installations, EC-CND final report, 2005.