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1. Introduction 
 

For the high-fidelity whole-core reactor analysis using 

the continuous-energy Monte Carlo (MC) calculation, 

terabyte-level memory is required [1]. To overcome this 

excessive memory demand, the fission and surface 

source (FSS) iteration method was proposed [2] as a 

domain decomposition method (The word “iteration” is 

used rather than “cycle”). It is based on banking both the 

fission and surface sources for the next iteration. The 

fission sources are provided as usual, while the surface 

sources are provided by banking MC particles crossing 

local domain boundaries. The surface sources serve as 

boundary conditions for nonoverlapping local problems, 

so that each local problem can be solved independently. 

In this paper, two issues in the FSS iteration are 

investigated. One is quantifying the waiting time of 

processors to receive surface source data. By using non-

blocking communication, “time penalty” to wait for the 

arrival of the surface source data is reduced. The other 

important issue is underestimation of the sample 

variance of the tally because of additional inter-iteration 

correlations in surface sources. To estimate the real 

variances of tallies in the FSS iteration method, the 

history-based batch (HB) method [3] is applied. From the 

numerical results on a 3-D whole-core test problem, it is 

observed that the time penalty is negligible in the FSS 

iteration method and that the real variances of both pin 

powers and assembly powers are estimated by the HB 

method. 
 

2. Methodology 
 

2.1 Fission and Surface Source (FSS) Iteration Method 

using Non-Blocking Communication 
 

For the whole-core MC calculation, the global domain 

is decomposed into I local domains, where the local 

problem for the domain iD  (i=1 to I ) is given by fixed-

k (also known as fixed-source) problem with incoming 

angular flux boundary condition. In MC calculation, 

incoming angular flux boundary condition can be treated 

as surface sources, similarly to fission sources. Local 

problems are iteratively solved by updating both fission 

source and surface sources. The fission sources are 

provided as usual, while the surface sources are provided 

by banking MC particles crossing local domain 

boundaries. 

For domain-based parallelization, each local problem 

is assigned to a group of processors and solved 

independently. At the end of each FSS iteration, local 

tallies in domain iD  are gathered by a local tally server 

using the blocking communication, while the surface 

source data are sent to processors in neighboring local 

problems by using the non-blocking communication with 

the message-passage interface (MPI) parallelism [4]. 
 

2.2 Application of History-Based Batch (HB) Method to 

FSS Iteration Method 
 

In this section, the HB method is applied to the FSS 

iteration method to estimate the real variance of the 

sample mean Q . At the beginning of the first active 

iteration, both fission and surface sources are grouped 

into HBM   history-based batches with the same source 

size. As the FSS iteration proceeds, each group of 

ancestor fission and surface sources generates 

descendant fission and surface sources for the next 

iteration and form a history-based batch. 

Because of normalization of the sources imposed on 

each iteration, the initial source weight lW for both 

fission and surface sources is determined as: 
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where l is the FSS iteration index, N is the nominal 

fission source size of each iteration, ,
l
i fN  is the number 

of fission sources in local domain i at iteration l. 

The history-based batch tallies mQ  for the history-

based batch index m (m=1 to HBM ) are estimated as: 
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where activeL  is the number of active iterations, ,l nQ  is a 

tally from the source (or history) index n at iteration l, 

and m
lf   is the weight correction factor to preserve the 

sample mean Q  defined as: 
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In Eq. (3), ,l m
fN   is the number of fission sources 

included in the m-th history-based batch at iteration l. 

Then, the sample variance of the sample mean for the 

history-based batch tallies is obtained as: 
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where HBQ  is the sample mean of history-based batch 

tallies obtained as: 
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Since Eq. (4) is free from the variance bias, the real 

variance of the sample mean can be estimated by Eq. (4) 

by assuming HBQ Q . 
 

3. Numerical Results 
 

The test problem is a 3-D continuous-energy whole-

core problem modified from the Benchmark for 

Evaluation and Validation of Reactor Simulations 

(BEAVRS) [5]. Figs. 1 and 2 show the radial 

configurations, while Fig. 3 shows the axial 

configuration of the test problem. The material 

compositions and densities used are the same with those 

of Ref. [5]. NJOY version 99.364 [6] is used to generate 

continuous-energy cross section library at 600K using 

ENDF/B-VII.0. The continuous-energy MC calculations 

are performed by the in-house research code McBOX [7]. 

Fig. 4 shows three different test cases for domain 

decomposition, where Case 1 is the conventional power 

iteration without domain decomposition, Case 2 is the 

FSS iteration with 4 local domains showing natural load-

balance property, and Case 3 is the FSS iteration with 16 

local domains showing load-imbalance property. 
 

 
 

  
Fig. 1. Radial configurations of whole-core showing 

enrichment loading pattern. 

 

 

 
Fig. 2. Radial configurations of fuel assembly showing 

locations of guide tubes. 

 

 
Fig. 3. Axial configurations of whole-core (A-A cross section 

in Fig. 1). 
 

 
Fig. 4. Three test cases for domain decomposition using the 

FSS iteration method. 
 

Total 80 processors are assigned as in Table I, where 

the computing nodes are interconnected by Intel®  82576 

Gigabit Ethernet Controller, and OpenMPI version 1.8.1 

is used for MPI parallelism. 
 

Table I: Processor assignment for three test cases 

 Case 1 Case 2 Case 3 

No. of domains 1 4 16 

No. of processors* 

per domain 
80 20 5 

* Intel®  CoreTM i7-5820K @ 3.30 GHz 
 

For all test cases, MC calculations are performed with 

60 inactive iterations, 400 active iterations, and 

1,000,000 fission sources per iteration. During inactive 

iterations, the partial current-based coarse-mesh finite 

difference (p-CMFD) acceleration method [8] is applied 

to all cases. It should be noted that the p-CMFD 

acceleration causes large fluctuations in source 

distributions. To stabilize the source distributions, the 

“adaptive p-CMFD acceleration” is applied; an arbitrary 

factor    for the “generalized p-CMFD method” [9] 

varies linearly from 0 to -60 during inactive iterations, so 

that the fluctuations in the source distributions become 

smaller as the iteration proceeds at the expense of the 

acceleration speed. The coarse-mesh size for the p-

CMFD method is set as an assembly size with 20 

divisions in the axial direction. 
 

3.1 Source Convergence Check 
 

To check fission and surface source convergence of 

the FSS iteration method, both the Shannon entropy of 

fission source distribution and the ratio of the total 

number of surface sources to the total number of fission 

sources are monitored. Fig. 5 shows the Shannon 

entropies of the three test cases, where the bins for 

Shannon entropy are set as an assembly size with 18 

divisions in the axial direction. The reference Shannon 

entropy is obtained by the average of the Shannon 

entropies from iteration 401 to iteration 1400 in the 

conventional power iteration method.  
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Fig. 5. Shannon entropies of fission source distributions 
 

Fig. 6 shows the ratio of the total number of surface 

sources to the total number of fission sources in Cases 2 

and 3. The average of the ratios over active iterations are 

0.1605 and 0.4641 for Cases 2 and 3, respectively. 
 

 
Fig. 6. Ratio of the total number of surface sources to the total 

number of fission sources in Cases 2 and 3. 
 

3.2 Computing Time Analysis 
 

In Table II, ,track it  and ,penalty it  represent the averages 

of the source-tracking times and the time penalties over 

the processors assigned to local domain i and the other 

local domains in symmetric locations, respectively; iN  

represents the average number of sources per processor 

assigned to local domain i and the other local domains in 

symmetric locations; ,[ ]S track it  , ,[ ]S penalty it  , and 

[ ]S iN  represent the sample standard deviations of each 

quantity. 
 

Table II. Comparison of the source-tracking times [sec], the 

time penalties [sec], and the number of sources of three test 

cases at the first active iteration 

 
,track it  

( ,[ ]S track it ) 

,penalty it  

( ,[ ]S penalty it ) 

iN  

( [ ]S iN ) 

Case 1 1.67 
(0.03) 

n/a 
12515 

(9) 

Case 21)    

Local Domain D1 1.69 
(0.08) 

5.74E-05 
(2.08E-05) 

14541 
(554) 

Case 32)    

Local Domain D1 0.80 

(0.05) 

3.37E-05 

(2.33E-05) 

9464 

(599) 

Local Domain D2 1.84 

(0.14) 

6.20E-05 

(3.04E-05) 

19478 

(1450) 

Local Domain D3 2.17 

(0.12) 

9.33E-05 

(3.46E-05) 

25103 

(1263) 
1)Local domain D1 is denoted in Fig. 4 (Case 2). 
2)Local domains D1 , D2, and D3 are denoted in Fig. 4 (Case 3). 
 

 

 

 

3.3 Real Variance Analysis 
 

To obtain the real variance, 30 independent batch runs 

are performed for each test case. To distinguish standard 

deviations obtained by different ways, the following 

notations are used; app   denotes the apparent standard 

deviation; HB   denotes the sample standard deviation 

obtained by Eq. (4); real   denotes the real standard 

deviation. Note that the number of history-based batches 

used to calculate HB   is 50. Figs. 7 and 8 show the 

standard deviations of the pin power and assembly power 

distributions, respectively. 

 

 
Fig. 7. Pin power distributions and their standard deviations for 

three test cases. 

 

 
Fig. 8. Assembly power distributions and their standard 

deviations for three test cases. 
 

To compare the standard deviations of the pin power 

and assembly power distributions easily, Table III shows 

the averages of the standard deviations; app  , HB  , 

real   , and the average ratios; appr   and HBr  which 

represent the averages of real app   , real HB   , 

respectively. Compared to the appr   values, the HBr  

values are much closer to unity, which means that the HB 

method estimates the real variances very well. It is noted 

that, for Case 1, the HB method estimates the real 

variances within 90% confidence interval. However, HBr  

values show some deviations from unity and the 

deviations become larger for finer divisions of local 

domains. Some discussions on this observation are given 

in Section 4. 
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Table III. Comparison of the standard deviations [pcm] of pin 

power and assembly power distributions for three test cases 

 app  HB  
real (90% 

Confidence 

Interval) 

appr  HBr  

P
in

 

Case 1 0.95 1.64 1.78 (1.47, 2.28) 1.88 1.08 

Case 2 0.95 1.61 1.97 (1.63, 2.52) 2.08 1.22 

Case 3 0.96 1.53 1.99 (1.64, 2.54) 2.08 1.29 

A
ss

em
b
ly

 Case 1 47 349 395 (326, 506) 8.45 1.12 

Case 2 45 337 452 (373, 579) 9.94 1.34 

Case 3 43 310 455 (375, 582) 10.5 1.46 

 

Table IV compares the standard deviations of the 

eigenvalues for three test cases. The average of the 

eigenvalues obtained by 30 independent batch runs is 

denoted as effk  , and appr   is the ratio of the real to 

apparent standard deviations. It is seen that the 

multiplication factor is almost free from the variance bias. 
 

Table IV. Comparison of standard deviations [pcm] of the 

eigenvalues for three test cases 

 effk 1) app  real (90% 

Confidence Interval) 
appr  

Case 1 1.06408 4.13 4.23 (3.49, 5.41) 1.02 

Case 2 1.06407 4.17 4.14 (3.42, 5.30) 0.99 

Case 3 1.06406 4.60 4.60 (3.80, 5.89) 1.10 
1)The eigenvalues are estimated by the ratio method based on 

the collision estimator in Ref. [2]. 

 

4. Conclusions 

 

In this paper, two issues in the FSS iteration method, 

i.e., the waiting time for surface source data and the 

variance biases in local tallies are investigated for the 

domain decomposed, 3-D continuous-energy whole-core 

calculation. For those purposes, three cases; Case 1 (1 

local domain), Case 2 (4 local domains), Case 3 (16 local 

domains) are tested. For both Cases 2 and 3, the time 

penalties for waiting are negligible compared to the 

source-tracking times. However, for finer divisions of 

local domains, the loss of parallel efficiency caused by 

the different number of sources for local domains in 

symmetric locations becomes larger due to the stochastic 

errors in source distributions. For all test cases, the HB 

method very well estimates the real variances of local 

tallies. However, it is also noted that the real variances of 

local tallies estimated by the HB method show slightly 

smaller than the real variances obtained from 30 

independent batch runs and the deviations become larger 

for finer divisions of local domains. The parametric 

study in terms of the number sources in each history-

based batch, denoted as batch size in Ref. [3] shows that 

the real variance estimated by the HB method can be 

smaller than the real variance from the independent batch 

runs for a small batch size in a large dominance ratio 

problem. The batch size used for the HB method may not 

be large enough to accurately estimate the real variance 

in this test problem.  

In conclusion, the waiting time for surface source data 

is negligible in the FSS iteration method, and the loss of 

parallel efficiency caused by the different number of 

sources can be reduced by the source splitting scheme 

discussed in Ref. [2]. To estimate the real variances of 

local tallies, a large batch size would be required for fine 

divisions of the local domains. 
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