

Weibull 모수 추정치의 불확실성 평가를 통한 균열생성실험 조건 연구

한국원자력학회 2016 춘계학술대회, 핵연료 및 원자력재료 분과 제주 국제컨벤션센터(ICC JEJU), 302 2016. 5. 13. (금)

박재필, 반치범*

Materials in Nuclear Systems Laboratory School of Mechanical Engineering Pusan National University

Contents

Introduction

- Weibull Estimation
- Monte Carlo Simulation
- Results and Discussion

Summary

Stress Corrosion Cracking (SCC)

- ✓ One of the main materials-related issues in operating nuclear reactors.
 - Can cause significant Loss of Coolant Accident (LOCA).

SCC가 발견된 182/82 용접부 위치 개략도

미국 V.C. Summer 고온관 용접부에서 발견된 PWSCC

"PWSCC/LPSCC in PWRs (+ Steam Generator Corrosion)," USNRC, Adams No. ML11266A011

[EPRI MRP-220, 2007]

Initiation time of SCC

- ✓ To predict the accurate time of SCC is very difficult.
 - The mechanism of SCC initiation is quite complex.
 - Most of SCC experiment show **non-negligible scatters** in cracking time.

- Prediction model of SCC initiation
 - ✓ Deterministic model or **Probabilistic model**
 - Probabilistic model can quantify the data scatters in SCC experiment.

The Weibull distribution

- ✓ Frequently used as a cracking probability function.
 - Can consider the effect of **<u>time-dependent degradation</u>** of material.
 - Shape parameter (β); scale parameter (η)

Experimental factors for Weibull estimation

- ✓ It is possible to estimate the parameters of the Weibull distribution by SCC test.
 - Many specimens
 - Narrow censoring interval
 - Long test duration

Accurate estimators for the SCC initiation model

What is the 'reasonable' level?

U-bend specimen

of specimens (6 ea.)

Censoring interval (150 h)					Test duration (12	
						^
Specimen	100 hr	250 hr	500 hr	700 hr	900 hr	1200 hr
# 1	x	х	х	х	Crack	-
# 2	х	х	Crack	-	-	-
# 3	x	х	х	х	х	Crack
# 4	х	Х	х	Х	Crack	-
# 5	x	х	х	х	х	Crack
# 6	х	х	х	х	х	Crack

The example of SCC experiment result (interval censored)

Median rank

- ✓ Median rank is used to estimate **the cracking probability** at the certain time.
 - The number of total specimen : N
 - The number of cracking specimen : j
 - Cracking probability : θ
- \checkmark Assume that all the specimens are tested independently (i.e., *j* is binomially distributed),

•
$$CDF_{bin} = \sum_{i=0}^{j} {N \choose j} \theta^{i} (1-\theta)^{N-i}$$

 $= (N-j) {N \choose j} \int_{0}^{1-\theta} t^{N-j-1} (1-t)^{j} dt$
 $= I_{1-\theta}(N-j,j+1)$
 $= 0.5$
• $\theta_{median} = 1 - I_{0.5}^{-1} (N-j,j+1)$
* Incomplete beta function
 $B(x; \alpha, \beta) = \int_{0}^{x} t^{\alpha-1} (1-t)^{\beta-1} dt$
 $I_{x}(\alpha, \beta) = \frac{B(x; \alpha, \beta)}{B(1; \alpha, \beta)}$

Median Rank

※ Regularized incomplete beta function

Meaning of median rank

부

X For the case of N = 10

- Median Rank Regression (MRR)
 - ✓ Weibull parameters are determined by regression.
 - Linearization technique is not recommended*.

$$ln\left[ln\left[\frac{1}{1-F(t)}\right]\right] = \beta ln(t) - \beta ln(\eta)$$

Not recommended for regression

* U. Genschel, W.Q. Meeker, A comparison of maximum likelihood and median-rank regression for Weibull estimation, Quality Engineering, 22.4 (2010) 236-255

Time (hr)	Cracking fraction	Cracking probability
100	0/6	0
250	0/6	0
500	1/6	0.1091
700	1/6	0.1091
900	3 / 6	0.4214
1200	6 / 6	0.8909

Median Rank Regression (MRR)
 Maximum Likelihood Estimation (MLE)

Likelihood function

- ✓ MLE method estimates the Weibull parameters directly by using the likelihood function.
- ✓ For interval censored data*;
 - Likelihood function

* ReliaSoft Corporation, Life Data Analysis Reference Book, Retrieved Jan. 1, 2014, available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

$$L(\beta,\eta) = \prod_{i=1}^{S} [1 - F(s_i;\beta,\eta)] \cdot \prod_{j=1}^{C} [F(c_{j_U};\beta,\eta) - F(c_{j_L};\beta,\eta)]$$

• Log-likelihood function

$$\Lambda(\beta,\eta) = \sum_{i=1}^{S} \ln[1 - F(s_i;\beta,\eta)] + \sum_{j=1}^{C} \ln[F(c_{j_U};\beta,\eta) - F(c_{j_L};\beta,\eta)]$$

• The condition of **maximum likelihood** point

$$\begin{cases} \frac{\partial}{\partial \beta} \Lambda(\beta, \eta) = 0 \\ \frac{\partial}{\partial \eta} \Lambda(\beta, \eta) = 0 \end{cases}$$

Solve these two simultaneous non-linear equations

Maximum Likelihood Estimation (MLE)

- Numerical (or graphical) approach is used for finding the maximum likelihood point.
- ✓ It is interesting that ' $\theta_{MRR}(t) \neq \theta_{MLE}(t)$ '.

Which method is accurate?

Time (hr)	Cracking fraction	Unreliability
100	0/6	0
250	0/6	0
500	1/6	0.1091
700	1/6	0.1091
900	3 / 6	0.4214
1200	6 / 6	0.8909

* John. I. McCool, Using the Weibull distribution: reliability, modeling and inference, John Wiley & Sons, New Jersey, 2012

- There is no MLE theory yet available to set the estimation confidence for <u>interval</u>
 <u>censored data</u>*.
 - Monte Carlo simulation could be used to evaluate uncertainties of each estimation methods quantitatively.

Simulation study range

***** Select 63 combinations of simulation cases

True Weibull parameter		The number of	Test duration	Censoring interval
η_{true}	β_{true}	specimen	[% of η _{true}]	[% of η _{true}]
100 🦟	2	5	80	5
	3 ←	→ 10 ←	100	10
	4	15	> 120	15
× Ba	seline case of	20	140	> 20
the s	simulation study	25	160	30
		50	180	40
		100	200	60

63 cases

Method of the simulation

✓ 10,000 times of **random simulations** for each combination cases.

Case 1	Sim. 1	Sim. 2	Sim. 3	•••	Sim. 10,000
β_{True}	$\widehat{\boldsymbol{\beta}}_{MLE,1}$ $\widehat{\boldsymbol{\beta}}_{MRR,1}$	$\widehat{\boldsymbol{\beta}}_{MLE,2}$ $\widehat{\boldsymbol{\beta}}_{MRR,2}$	$\widehat{\boldsymbol{\beta}}_{MLE,3}$ $\widehat{\boldsymbol{\beta}}_{MRR,3}$		β _{MLE,10000} β _{MRR,10000}
η_{true}	$\widehat{oldsymbol{\eta}}_{MLE,1} \ \widehat{oldsymbol{\eta}}_{MRR,1}$	$\widehat{oldsymbol{\eta}}_{MLE,2} \ \widehat{oldsymbol{\eta}}_{MRR,2}$	$\widehat{\boldsymbol{\eta}}_{MLE,3} \ \widehat{\boldsymbol{\eta}}_{MRR,3}$		$\widehat{oldsymbol{\eta}}_{MLE,10000} \ \widehat{oldsymbol{\eta}}_{MRR,10000}$

Distribution of estimators

Materials in Nuclear Systems Lab.

✓ For baseline simulation case,

True Weibul	l parameter	The number of	Test duration	Censoring interval
η_{true}	β_{true}	specimen	[% of η_{true}]	[% of η_{true}]
100	3	10	120	20

• Correlation between $\hat{\beta}$ and $\hat{\eta}$

- \checkmark There is no correlation between $\hat{\beta}$ and $\hat{\eta}$ for both MLE and MRR estimation.
 - because, $R^2 \cong 0$.

Evaluation of estimation uncertainty

✓ 5 %, 50 % and 95 % percentiles of Weibull estimators were compared to the true parameters.

$$\frac{\text{Standard Error (SE):}}{\text{SE}(\hat{\beta}) = \frac{\hat{\beta} - \beta_{true}}{\beta_{true}}} \\ \frac{\hat{\beta} - \beta_{true}}{\beta_{true}} \\ \frac{\text{SCI}_{90\%}(\hat{\beta}) = \text{SE}(\hat{\beta}_{95\%}) - \text{SE}(\hat{\beta}_{5\%})}{\text{SE}(\hat{\eta}) = \frac{\hat{\eta} - \eta_{true}}{\eta_{true}}} \\ \frac{\text{SCI}_{90\%}(\hat{\eta}) = \text{SE}(\hat{\eta}_{95\%}) - \text{SE}(\hat{\eta}_{5\%})}{\text{SCI}_{90\%}(\hat{\eta}) = \text{SE}(\hat{\eta}_{95\%}) - \text{SE}(\hat{\eta}_{5\%})}$$

The estimation method would be reliable when $\underline{SE_{50\%}}$ and $\underline{SCI_{90\%}}$ approached to 'zero'. ~ bias ~ deviation

The Number of Specimen

Specimen = 10, duration = 120 %

Censoring Interval (% of η_{true})

1.2

0.9

0.6

0.3

0.0

-0.3

-0.6

1.2

0.9

0.6

0.3

0.0

-0.3

-0.6

Standard Error of eta Estimator

0

10

10

20

20

Standard Error of beta Estimator

 $SE(\widehat{\boldsymbol{\beta}})$

 $SE(\hat{\eta})$

Effect of the test duration

1.2

0.9

0.6

0.3 -

0.0

-0.3

-0.6

1.2

0.9

0.6

0.3

-0.3

-0.6 80

Standard Error of eta Estimator

gr

100

100

Standard Error of beta Estimator

 $SE(\widehat{\boldsymbol{\beta}})$

 $SE(\hat{\eta})$

Specimen = 10, interval = 20 % \checkmark

Test Duration (% of η_{true})

Results of SCI evaluation

Materials in Nuclear Systems Lab.

 $egin{aligned} & {}^{\prime}eta_{true} = 3' \\ & {}^{\prime}test\ duration = 120\ \%\ of\ \eta_{true}' \end{aligned}$

※ For the case of

Summary

Summary

- \checkmark The goal of this work is
 - to quantify the estimation uncertainty of Weibull estimation.
 - to suggest reasonable experimental conditions for SCC test.
- \checkmark $\hat{\eta}_{MLE}$ is reliable even if the number of specimen is relatively small (Esp. at high β_{true}).
 - Estimation of β from the test is not recommended.
- ✓ There is a critical censoring interval and test duration.
 - Beyond the critical condition is undesirable.
 - Too short censoring interval (< 20 % of η_{true}) is not effective for reducing the estimation uncertainty.
 - Too long test duration (> 160 % of η_{true}) is also not effective.

THANK YOU FOR YOUR ATTENTION

23