

Probabilistic Risk Assessment of Cask Drop Accident during On-Site Spent Nuclear Fuel Transportation

Jaehyun Ham, Robby Christian, Belal Al Momani, and Hyun Gook Kang

KAIST

Nuclear Plant Reliability and MMI Design Lab. Reliability

Table of Contents

- Introduction
 - Research overview
 - Objective & Target cask
- Method
 - Process of on-site transportation
 - PRA methodology
 - FDR (Fuel Damage Ratio)
 - RF_{C-E} (Release Fraction from Cask to Environment)
 - Lid gap analysis
 - Radiological consequence
 - Other conditions

- Result
 - Drop angle analysis
 - Release fraction
 - Event tree & Risk assessment
- Conclusion & Future work
- References

Introduction : Research overview

- SNF (Spent Nuclear Fuel) pool in Kori, Wolseong, Hanbit, Hanul sites will be saturated in 2016, 2018, 2019, 2021 each.
- Under the situation that solution of this problem is not determined, transferring the SNF temporarily from placeless pool to other pools can be an option.
- PRA (Probabilistic Risk Assessment) of on-site SNF transportation from SNF pool to wharf was done.
- Drop accident was only covered in this research.

turbulent@kaist.ac.kr 2 / 16

Reliabilitu

Introduction : Objective & Target cask

- Research objective : PRA of cask drop accident during on-site SNF transportation
- On-site transportation : SNF pool \rightarrow Wharf
- Target cask : Bolted metal cask (Reference : KN-12)
 - 21 Fuel assemblies
 - 1 Cask body (Carbon Steel)
 - 2 Cask lids (Carbon Steel)
 - 2 Impact limiter (Balsa & Redwood)
 - Weight : about 75 ton (fuel + cask)

about 85 ton (+ impact limiter)

Method : Process of on-site transportation

Storag	Contonto	Heigh	State	
Stages	Contents	Before	After	State
1	Loading fuel assemblies into the cask	4.8	0	SNF assemblies
2	Lifting the cask out of the cask pit	0	13	
3	Moving the cask to the railing area	13	13	
4	Lowering the cask over a railing of the spent fuel pool	13	0.3	
5	Moving the cask to the preparation area	0.3	0.3	
6	Lowering the cask onto the preparation area	0.3	0	SNF
7	Preparing the cask (draining, drying, inerting, and sealing)	0	0	assemblies + Cock
8	Lifting the cask	0	0.6	Cask
9	Moving the cask to the equipment hatch	0.6	0.6	
10	Inspection and maintaining the cask	0.6	0.6	
11	Lowering the cask on to the equipment hatch	0.6	0	
12	Equipping the impact limiter to cask body	0	0	
13	Lifting the cask	0	0.6	
14	Moving the cask to the shipment area	0.6	0.6	
15	Inspection and maintaining the cask	0.6	0.6	ONTE
16	Lifting the cask	0.6	3	SNF
17	Moving the cask to the truck	3	3	+
18	Lowering the cask on the truck	3	1	Cask
19	Transferring the cask to wharf by truck	1	1	+
20	Inspection and maintaining the cask	1	1	Impact Limiter
21	Lifting the cask	1	5	Lilling
22	Moving the cask to the ship	5	5	
23	Lowering the cask on the ship	5	0	

[1] U.S.NRC, "A Pilot PRA of a Dry Cask Storage System at a Nuclear Power Plant", NUREG-1864, 2007. [2] Sung-Hwan Chung, Chang-yeal Baeg, Byung-Il Choi, Ke-Hyung Yang and Dae-Ki Lee, "On-site Transport and Storage of Spent Nuclear Fuel at Kori NPP by KN-12 Transport Cask", J. of Korean Radioactive Waste Society, Vol.4, p.51-58, 2006. [3] AREAVA, "Process of Dry Storage System".

	Reliability													
	Table 1. Stages of the Dry Cask Storage Operation													
	Height (A)													
Sta	tages													
1	Loading fuel assemblies into the MPC (8)	4.8	16											
2	Placing the MPC lid onto the MPC and engaging the lift yoke on the transfer cask *>	0	0											
3	Lifting the transfer cask out of the cask pit	13	42.5											
4	Moving the transfer cask over a railing of the spent fuel pool	0.9	3											
5	Moving the transfer cask to the preparation area (1st segment)	0.3	1											
6	Moving the transfer cask to the preparation area (2 nd segment)	0.3	1											
7	Moving the transfer cask to the preparation area (3 rd segment)	0.3	1											
8	Lowering the transfer cask onto the preparation area (D)	0.3	1											
9	Preparing (draining, drying, inerting, and sealing) the MPC for storage	0	0											
10	Installing the short stays and attaching the lift yoke (D)	0	0											
11	Lifting the transfer cask	0.6	2											
12	Moving the transfer cask to exchange bottom lids of the transfer cask (1" segment)	0.6	2											
13	Moving the transfer cask to exchange bottom lids of the transfer cask (2 nd segment)	0.6	2											
14	Replacing the pool lid with the transfer lid	0.1	0.25											
15	Moving the transfer cask near the equipment hatch	0.6	2											
16	Holding the transfer cask	0.6	2											
17	Moving the transfer cask to the equipment hatch	0.6	2											
18	Lowering the transfer cask to the overpack through the equipment hatch	24.4	80											
19	Preparing (remove short stays, disengage lift yoke, attach long stays) to lower the MPC	0	0											
20	Lifting the MPC and opening doors of transfer lid	5.8	19											
21	Lowering the MPC through the transfer cask into the storage cask	5.8	19											
22	Moving the storage cask into the airlock on Helman rollers	0	0											
23	Moving the storage cask out of the airlock on Helman rollers	0	0											
24	Moving the storage cask away from the secondary containment on Helman rollers	0	0											
25	Preparing (installing lid, vent shield cross-plates, vent screens) the storage cask for storage	0	0											
26	Lifting the storage cask above the Helman rollers with the overpack transporter	0.1	0.25											
27	Moving the storage cask above a cushion on the preparation area	<0.1	<0.25											
28	Holding the storage cask above the cushion while attaching a Kevlar belt	<0.1	< 0.25											
29	Moving the storage cask above the concrete surface of the preparation area	0.3	1											
30	Moving the storage cask above the asphalt road	0.3	1											
31	Moving the storage cask above the gravel surface around the storage pads	0.3	1											
32	Moving the storage cask above the concrete storage pad	0.3	1											
33	Lowering the storage cask onto the storage pad	0.3	1											
34	Storing the storage cask on the storage pad for 20 years	0	0											

turbulent@kaist.ac.kr 4 / 16

[3]

Method : PRA methodology

- Risk = Probability × Consequence
 - Probability : for each stage *reference*
 - Consequence : Radiological consequence (man-mSv/transport) based on source term (1)
- Source term = MAR × FDR × RF_{R-C} × RF_{C-E} × LPF
 - MAR : Material-At-Risk, the initial amount of radioactive materials in cask (2)
 - FDR : Fuel Damage Ratio (3)
 - RF_{R-C}: Release Fraction from rod to cask *reference*
 - RF_{C-E} : Release Fraction from cask to environment (3)
 - LPF : Leak Path Factor, dispersion factor reference
- Calculation Tool
 - (1) HOTSPOT 3.0.3
 - : Atmospheric dispersion models
 - (2) Scale 6.1.3 (ORIGEN-ARP)
 - : Buildup, decay, and processing of radioactive materials calculation (3) ABAQUS 6.13-1
 - : FEM (Finite Element Method) simulation for impact analysis

Method : FDR (Fuel Damage Ratio)

- From FEM simulation, maximum accelerations for each SNF assembly was calculated.
- Using linear extrapolation, peak strain under 100 G for each SNF assembly was calculated.
- Failure criteria of peak strain by burn-up (GWDt/MTU)
 - High burn-up (55 ~ 60) : 1%
 - Intermediate burn-up (40 ~ 45) : 4%
 - Low burn-up (0 ~ 25) : 8%

	Peak Strain
Fraction of PWR Rods	under 100 G
	(%)
1/15	3.3
2/15	2.9
3/15	2.2
4/15	2
5/15	1.7
6/15	1.5
7/15	1.4
8/15	1.4
9/15	1.4
10/15	1.3
11/15	1.3
12/15	1.2
13/15	1.2
14/15	1.1
15/15	1.1

[4] Sandia National Laboratories, "A Method for Determining the Spent-Fuel Contribution to Transport Cask Containment Requirements", SAND90-2406, 1992.

turbulent@kaist.ac.kr 6 / 16

Method : RF_{C-E} (Release Fraction from Cask to Environment)

- Relationship between release fraction from cask to environment depends on leak area was considered for calculation.
- Cask is pressurized to 5 atm by the failure of all of the rods due to collision.
- Due to the leak area between lid and cask body, radioactive materials are released environment until pressure of the inner cask reaches to 1 atm.
- Calculation method of leak area : Lid gap analysis
- Maximum value : 0.8 for gas, 0.5 for volatile under > 1,000 mm² of leak area

[5] U.S.NRC, "Reexamination of Spent Nuclear Fuel Shipment Risk Estimates", NUREG-6672, 2000.

turbulent@kaist.ac.kr 8 / 16

Method : Lid gap analysis

- 4 node pairs on each lid which are point of contact between each lid and cask body were selected.
- Average value of displacements in the outer direction between nodes in each pair is considered as lid gap. By multiplying the lid gap and circumference of lid, total leak area can be calculated. 2
- O-ring seal : coverage 0.25 mm (metal), 2.5 mm (rubber)
- Leak area : The largest area during the impact situation

Method : Radiological consequence

- Gaussian dispersion is used to model the plume dispersal that developed in hotspot code. The hotspot code is designed for short range (less than 10 km), and short-term (less than few hours prediction).
- Values to calculate the radiological consequence were considered like below as a sample case.

Radionuclides		Release Height	Wind Speed Ref. Height	Breathing height & breathing rate	
Kr (Gas)	Cs (Volatile)	0 m	80 m	1.5 m & 3.47E-04 m3/sec	wsw sw ssw ssse SSE Ocean

Wind Speed Groups	Group probability
Group 0: 0.10 <= u <= 0.80	3.21 %
Group 1: 0.80 < u <= 1.60	9.66 %
Group 2: 1.60 < u <= 2.40	17.35 %
Group 3: 2.40 < u <= 3.20	22.03 %
Group 4: 3.20 < u <= 4.00	21.16 %
Group 5: 4.00 < u <= 4.80	13.72 %
Group 6: 4.80 <= u <= 5.60	6.15 %
Group 7: 5.60 < u <= 5.61	0.50 %
Group 8: u > 5.61	6.21 %
	Total Sum: 100.00 %

turbulent@kaist.ac.kr 9 / 16

Method : Other conditions

- Probability
 - Cask drop during a single crane action : 5.6E-05 (Stage 2 ~ 18, 20 ~ 23)
 - Cask drop during transferring by truck : 3.3E-08 (Stage 19)^[6]
- Source term = MAR × FDR × RF_{R-C} × RF_{C-E} × LPF
 - RF_{R-C} : 3.0E-05 for Cs (volatile) / 0.12 for Kr (gas)^[7]
 - Leak Path Factor (LPF) = 1
- Impact analysis
 - Drop accident was only covered.
 - Floor was assumed as a rigid body.
 - The most conservative drop angle was applied to each state of cask.
- Consequence of stage 1 was not covered in this research.

(Loading fuel assemblies into the cask under the water)

[6] EPRI, "Probabilistic Risk Assessment of Bolted Storage Casks", EPRI-1009691, 2004.[7] U.S.NRC, "Spent Fuel Transportation Risk Assessment", NUREG-2125, 2012.

Item	Value
SNF type	CE 16 × 16
Initial enrichment	4.5 wt%
Cooling period	10 years
Amount of uranium (per assembly)	450 kg
Number of fuel assembly	21
Burn up rate	Intermediate (45 GWD/MTU)
Target distance	5.7 km (LPZ)
Wind direction	Average

turbulent@kaist.ac.kr 10 / 16

Results : Drop angle analysis

- Two states of cask were considered during the whole process.
- Specific drop angles were considered for each state conservatively.
- Considered drop angle : Angle which shows the largest leak area
 - Cask without impact limiter : 0° (side drop)
 - Cask with impact limiter : 0° (side drop)

turbulent@kaist.ac.kr 11 / 16

Casa	State	Unight (m)	EDD	Leak Are	ea (mm²)	Release 1	fraction	Release fraction			
Case	State	neight (iii)	FDK	Rubber	Metal	Rubber	O-ring	Metal O-ring			
				O-ring	O-ring	Cs	Kr	Cs	Kr		
1		1	1	0	1310	0	0	2.4E-06	9.6E-02		
2		4	1	203	5390	1.54E-06	9.6E-02	2.4E-06	9.6E-02		
3	Without impact limiter	7	1	1160	9430	2.40E-06	9.6E-02	2.4E-06	9.6E-02		
4		10	1	1920	13000	2.40E-06	9.6E-02	2.4E-06	9.6E-02		
5		13	1	2700	17100	2.40E-06	9.6E-02	2.4E-06	9.6E-02		
6		1	1	0	0	0	0	0	0		
7	With impact limiter	3	1	0	2960	0	0	2.4E-06	9.6E-02		
8		5	1	0	5330	0	0	2.4E-06	9.6E-02		

turbulent@kaist.ac.kr 12 / 16

Results : Event tree & Risk assessment

Event tree for rubber O-ring case

- Event tree was constructed for on-site SNF transportation (23 stages) including probabilities and consequence which is based on the interpolation of FEM simulation table on previous page.
- State of each sequence : OK / ND (No Damage) / F (Failure)
- 'OK' state can occur only in 1st sequence which is success of whole on-site transportation without any drop accident, and the probability is 99.89 %.

turbulent@kaist.ac.kr 13 / 16

Results : Event tree & Risk assessment

Land Transportation	Loading SNF assembly	Lifting cask	Moving cask to railing area	Lowering cask over railing area	Moving cask to preparation area	Lowering cask or preparation area	Lifting cask	Moving cask to equipment hatch	Inspection and maintaing	Lowering cask on equipment hatch	Lifting cask	Moving cask to shipment area	Inspection and maintaining	Lifting cask	Moving cask to truck	Lowering cask or truck	n Transferring cask to wharf	Inspection and maintaining	Lifting cask	Moving cask to ship	D Lowering cask of ship	n Seq#	State Fr	requency (Consequence	Risk
	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6	Stage 8	Stage 9	Stage 10	Stage 11	Stage 13	Stage 14	Stage 15	Stage 16	Stage 17	Stage 18	Stage 19	Stage 20	Stage 21	Stage 22	Stage 23					
																						1 C	ж 9.9	896-001 0		0.000E+000
																		8		9		2 F	5.5	94E-005 8	183E-003	4.578E-007
																				12. 		-3 F	5.5	94E-005 1	.230E-002	6.881E-007
																						4 F	5.5	95E-005 9	.820E-003	5.494E-007
																	-					5 N	D 5.5	i95E-005 0		0.000E+000
																-						6 N	D 3.2	97E-008 0		0.000E+000
													ſ		-							-7 F	5.5	95E-005 8	.167E-003	4.569E-007
																						8 F	5.5	96E-005 1	.230E-002	6.883E-007
																						-9 F	5.5	96E-005 8	.167E-003	4.570E-007
												-										10 N	D 5.5	965-005 0	()	0.000E+000
																						11 N	D 5.5	97E-005 0		0.000E+000
										4 !												-12 N	D 5.5	97E-005 0	(0.000E+000
								r		L												13 F	5.5	i97E-005 6	150E-003	3.442E-007
								-														-14 F	5.5	i98E-005 1	.230E-002	6.886E-007
							-	L														-15 F	5.5	98E-005 1	230E-002	6.886E-007
					[-																-16 F	5.5	985-005 6	150E-003	3.443E-007
					-																	-17 F	5.5	99E-005 6	150E-003	3.443E-007
				-																		18 F	5.5	i99E-005 1	.230E-002	6.887E-007
	ſ																					19 F	5.5	99E-005 1	.230E-002	6.887E-007
																						20 F	5.6	006-005 1	.230E-002	6.888E-007
																						21 F	5.6	00E-005 1	.142E-002	6.395E-007
																						-22 N	ID 3.2	006-005 0		0.000E+000

Event tree for metal O-ring case

- Total risk for LPZ (Low Population Zone, 5.7km)
 - Rubber O-ring : 1.906E-06 man-mSv/transport
 - Metal O-ring : 8.413E-06 man-mSv/transport
- Most risky sequence : 3 (Moving the cask to the railing area on 13 m)
- Consequence verification : Total risk (distance)
 - NUREG-1864 : ~ 3.3E-08 man-mSv/transport (16 km)

turbulent@kaist.ac.kr 14 / 16

Conclusion & Future work

- PRA of cask drop accident during on-site SNF transportation was done in this research.
- For all states of SNF cask during whole process, side drop was applied as the most conservative drop condition.
- Total risk of rubber O-ring case can be reduced more than 4 times than that of metal O-ring case.
- Floor can be applied with the realistic model instead of rigid body.
- Detailed model of fuel assembly and O-ring can be applied.
- Human error which can influence the consequence can be applied.
- Fire accident can be analyzed.

[1] U.S.NRC, "A Pilot PRA of a Dry Cask Storage System at a Nuclear Power Plant", NUREG-1864, 2007.

[2] Sung-Hwan Chung, Chang-yeal Baeg, Byung-Il Choi, Ke-Hyung Yang and Dae-Ki Lee, "On-site Transport and Storage of Spent Nuclear Fuel at Kori NPP by KN-12 Transport Cask", J. of Korean Radioactive Waste Society, Vol.4, p.51-58, 2006.
[3] AREAVA, "Process of Dry Storage System".

[4] Sandia National Laboratories, "A Method for Determining the Spent-Fuel Contribution to Transport Cask Containment Requirements", SAND90-2406, 1992.
[5] U.S.NRC, "Reexamination of Spent Nuclear Fuel Shipment Risk Estimates", NUREG-6672, 2000.

[6] EPRI, "Probabilistic Risk Assessment of Bolted Storage Casks", EPRI-1009691, 2004.

[7] U.S.NRC, "Spent Fuel Transportation Risk Assessment", NUREG-2125, 2012.

Thank You

turbulent@kaist.ac.kr