

A MC/DC and Toggle Coverage Measurement Tool for FBD Program Simulation

Eui-Sub Kim, Sejin Jung, Jaeyeob Kim, Junbeom Yoo Dependable Software Laboratory KONKUK University

2016.05.13

Functional Verification of FBD

< The NuDE framework >

How Adequately the Testing has been Performed?

"Test Done = Test Plan Executed and All Codes Executed"

Functional Coverage

- = Requirements Coverage
- This coverage will be defined by the user
- User will define the coverage points for the functions to be covered
- 100% of functional coverage is always required

Code Coverage

- = Structural Coverage
- How many lines are executed, how many times expressions, branches executed, etc.
- Code coverage is collected by the simulation/testing tools.
- Users use code coverage to reach those corner cases which are not hit by the test cases.
 - Unfortunately, errors and bugs are often found in the corner cases.
- To assure a high quality of functional verification, code coverage is important as well as functional coverage

Introduction

We applied two code coverages to FBDs
(1) Toggle coverage , (2) MC/DC coverage
Defined coverage criteria for FBD simulation
If the coverages is not 100%, it means that the verification may be insufficient or the FBD may have unintended errors or bugs.

• We developed a set of supporting CASE tools

Developed two CASE tools 'FBDSim' and 'FBDCover'

• Can simulate FBDs and measure the code coverages of the FBD simulation

 Objective : measuring the coverages during simulation (a sequential/continuous operation environment, not a single execution)

LABORATORY

Toggle Coverage & MC/DC Coverage

Toggle Coverage

- One of the oldest measurements of coverage in hardware design
- Measures the bits of logic that have toggled during simulation
- Can be measured in logic simulation
- Ex) 1-to-0 and 0-to-1 \rightarrow 100% toggle coverage

MC/DC Coverage

- Control flow-based structural coverage of the most highest level, in practice
- Widely applied to C/Java programs

Case #	Α	В	OUT	А	В
1	Т	Т	Т	0	0
2	Т	F	F		0
3	F	Т	F	0	
4	F	F	F		

100% MC/DC → (T,T), (F,T), (T,F)

Toggle Coverage in FBDs

DEPENDABLE SOFTWARE

MC/DC Coverage in FBDs

	Inputs	MC/DC
AND	IN1, IN2	(0,1) (1,0) (1,1)
OR	IN1, IN2	(0,0) (0,1) (1,0)

Block Toggle Coverage (An Example of Insufficient Simulation)

- Insufficient simulation ?
- If the variable 'PV_OUT' is always located between MIN and MAX,
 - The block 'LT_INT_2' is never toggled. \rightarrow 0% toggle coverage
- User can add more test cases to toggle the function block
 - Ex) PV_OUT = 0~9 and next PV_OUT > 10 (again)
 - $(0 \rightarrow 1) \qquad (1 \rightarrow 0)$

Output Toggle Coverage (An Example of Unreachable Code)

• Unreachable ?

- If the variable 'OB_INT_ST' is always true?
 - The output variable 'TRIP' is never toggled. \rightarrow 0% toggle coverage

• User can modify the logic

- Ex) remove 'AND_BOOL' block
- Ex) change the 'OB_INT_ST' variable (i.e., constant) to an (simulation) input variable

MC/DC Coverage (An Example of Insufficient Simulation)

- Insufficient simulation ?
- If the variable 'PV_OUT' is always located between MIN and MAX,
 - The input of 'AND_BOOL' is always (1, 1) \rightarrow 33% MC/DC coverage
- User can add more test cases to toggle the function block

(0, 1) (1, 0)

MC/DC Coverage (An Example of Unreachable Code)

- Unreachable ?
- If two inputs of the upper 'LT_INT_2' are exchanged (due to a logic error)
 - It means "PV_OUT < MIN and PV_OUT < MAX"</p>
 - The condition (1, 0) is never generated. \rightarrow The max MC/DC is 66%
- User may have a chance to identify the (hypothetical) error and fix the logic

THE TOOL DEVELOPMENT

The Tool Development

*	FBDSim	
* FBDS	Sim *	
Model input-		console
Input File : C	VUSers/EUI-SUB/Desktop/nude/FIX_RISING.xml Open	Simulation result 생성 C:\Users\EUI-SUB\De
POU List		
	IG	
- Simulation		
Model File :	C:\Users\EUI-SUB\Desktop\nude\FIX_RISING.xml Open	
Senario File :	C:\Users\EUI-SUB\Desktop\nude\Scenario.txt Open	
	Simulation	< >

FBDSim

FBDSim

• FBD Simulation Tool

- Input: (1) FBD program in PLCopen TC6 XML format , (2) Simulation scenario
- Output: (1) Simulation result, (2) Coverage information
- Embedded in FBD Editor

FBDCover

- Coverage Measurement Tool
- Input:
 - Coverage information from FBDSim
- Output:
 - Graphical coverage result
- Embedded in FBD Editor
- Notifies ranks of scenarios
- Notifies uncovered elements

Ranks of FBDCover

- Highest rank scenario vs. Lowest rank scenario of toggle coverage
 - Provide valuable information to improve simulation scenarios

Uncovered Elements of FBDCover

Notify elements which are not simulated

After improving the scenarios, user can re-simulate them seamlessly

CASE STUDY

Case Study

LABORATORY

Case Study

• We found uncovered elements and improved the scenarios and then resimulated with the scenarios.

Case Study (Example)

• We found that we missed to simulate the bypass, with the MC/DC coverage.

LABORATORY

Case Study (Example)

• Finally, we were able to get 100% toggle and MC/DC coverage.

- Of course, it is not sufficient to assure that the program is free from bug or error.
- It is possible to fail with 100% code coverage.
- However, we always try to improve on the quality of verification with every possible means.
- The tool is helpful because it notify engineers about that there are uncovered elements.
 - The uncovered elements imply that the simulation is not sufficient or the FBD has unintended errors or bugs.

100%, 100%

Conclusions and Future Work

• We applied toggle and MC/DC coverage to the FBD.

- If the coverages are not 100%, user should analyze whether it is reasonable.
- If it is not reasonable, it means that the simulation may be insufficient or the logic may have unintended errors or bugs.
- We are trying to evaluate the efficiency/applicability of the coverages proposed.
- All condition coverage is also applicable.

• We developed two CASE tools.

- We developed two CASE tools 'FBDSim' and 'FBDCover'
- We can simulate the FBD and measure the coverages of the simulation
- It produces a rank of scenarios and uncovered elements.

Conclusions and Future Work

- We are now planning to extend the coverage technique and tools to develop a full coverage-based scenario generation tool.
 - NuDE 2.0
 - IST-FPGA

Jaeyeob Kim, Eui-Sub Kim, Junbeom Yoo, Young Jun Lee and Jong-Gyun Choi, "An Integrated Software Testing Framework for FPGA-based Controllers in Nuclear Power Plants," Nuclear Engineering and Technology, Vol.48, No.2, pp.470-481, 2016.

THANK YOU

http://dslab.konkuk.ac.kr jbyoo@konkuk.ac.kr

