

Application of Looped Network Analysis Method to Core of Prismatic VHTR

Jeong-Hun Lee, Hyoung-Kyu Cho, Goon-Cherl Park

Nuclear Thermal Hydraulic Engineering Lab. Seoul National University, Republic of Korea May 13, 2016

Contents

Introduction

- Looped Network Analysis Code
- Verification
- Flow Resistance Model for Core of VHTR
- Validation

Conclusions

Introduction

Very High Temperature Reactor

- Outlet temperature over 950 °C
- Working Fluid: He @7MPa

Core of PMR200

- Prismatic core (block type)
- Core element and moderator: Graphite
 - Capable of withstanding irradiation and high temperature
 - ✓ Shrinkage by irradiation fluence
 - ✓ Thermal expansion

Dimensional change of graphite with irradiation fluence

Side view

Top view

3

Introduction

Analysis of Flow Distribution in the VHTR Core

	CFD	Network code		
Strengths	High accuracy Local information (Local flow field, flow separation)	Fast calculation results Low computational cost Easy to change gap conditions		
Weaknesses	High computational cost and time Difficult to change gap conditions	Impossible to obtain local information		

Looped Network Analysis Code

The governing equations are based on Kirchhoff's circuit laws.

- 1) The algebraic sum of inflow and out flow discharges at a node is zero.
- 2) The algebraic sum of the head loss around a loop is zero.

Looped Network Analysis Code

Flow (Conservation of Mass)

Where a_{jn} is +1 for positive discharge flows in pipe n, -1 for negative discharge flows in pipe n, and 0 if pipe n is not connected to node j. The total pipes in the network are i_L .

Head Loss (Conservation of Momentum)

Linearization coefficient

$$F_{k} = \sum_{n=1}^{kn} R_{kn} \left| Q_{kn} \right| Q_{kn} = 0 \quad \text{``Linear Theory Method''} \qquad F_{k} = \sum_{n=1}^{k_{L}} b_{kn} Q_{kn} = 0$$

Where $b_{kn} = R_{kn}|Q_{kn}|$ if pipe *n* is in loop *k* or otherwise $b_{kn}=0$. The coefficient b_{kn} is revised with current flow rates for the next iteration.

$$h_{f} = RQ^{2} = f \frac{L}{D} \frac{V^{2}}{2g} \qquad R = \frac{fL}{2gDA^{2}}$$
Darcy-Weisbach equation
$$6 / 15$$

Example of Simple Looped Network using LTM

$$\begin{pmatrix} +1 & +1 & 0 & 0 \\ -1 & 0 & +1 & 0 \\ 0 & -1 & 0 & +1 \\ b_1 & b_2 & -b_3 & -b_4 \end{pmatrix} \begin{pmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \end{pmatrix} = \begin{pmatrix} Q_{total} \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
where $b_n = R_n |Q_n|$

Verification Case (2-D layer, one block)

Cross flow and lateral flow (through bypass gap)

- 7 nodes, 6 loops, 12 flow paths (12 by 12 matrix)
- Flow direction has to be determined when the network is modeled.
- The calculation shows proper results.

Verification

Verification Case (2-D layer, 7 blocks)

- 37 nodes, 54 loops, 90 flow paths (90 by 90 matrix)
- 7 block case also shows the proper results.
- Flow only pass through the open gap region.
- Flow distribution shows the bilateral symmetry.

Flow Resistance Model for Core of VHTR

Determination of Flow Resistance (R)

In the coolant channels (pipe flow)

$$R_{CH} = \frac{fL}{2gD_{CH}A_{CH}^2} \qquad \qquad \frac{1}{f^{1/2}} \approx -1.8\log\left[\frac{6.9}{\text{Re}_d} + \left(\frac{\varepsilon/d}{3.7}\right)^{1.11}\right]$$
Haaland (1983) equation

In the bypass gap (parallel plate flow path)

$$R_{BG} = \frac{fL}{2gD_{BGh}A_{BG}^2} \qquad D_{BGh} = \frac{4 \times Flow Area}{Wetted Perimeter} = 2 \times \delta_{BG}$$

In the cross gap (Lee et al., 2015)

$$R_{CG} = \rho \cdot \frac{C_1 / (\delta_{CG} \operatorname{Re}_{CG}) + C_2}{2A_{CG}^2} \qquad K = \frac{C_1}{\delta \operatorname{Re}} + C_2, \ R = \frac{K\rho}{2A^2}$$

Wedge		Parallel		
C*1	C*2	C*1	C*2	
0.61	3.5	0.65	3.5	

Cross flow experiment

Flow Resistance Model for Core of VHTR

Hydraulic Resistance between Layers

- Bypass gap sudden contraction
- Coolant channel converging flow

Validation

Validation

Validation Results

Validation

- The flow network analysis code slightly underestimates pressure drop.
- Considering the uncertainty of the experimental results, the flow network analysis code shows reasonable results.

- A flow network analysis code was developed to evaluate the core bypass flow distribution by using looped network analysis method.
- The flow network analysis code was validated with SNU multi-block experiment.
- The flow network analysis code predicted the flow distribution and pressure drop of the SNU multi-block experiment.
- It can be expected that the developed network code can contribute to assure the core thermal margin by predicting the bypass flow in the whole core of VHTR.
- Further work
 - Heat transfer module will be added on.

Thank You!

huny12@snu.ac.kr

Appendix

Side view

n layers	Lateral network	n+1	n+1			
	Vertical network	n	n			
Number of no	des	(numbe	(number of base nodes)·(n+1)			
Number of flo	w paths	(numbe	(number of base sides)·(n+1)+(number of base nodes)·n			
Number of loc	ps	(numbe	(number of base elements)·(n+1)+(number of base sides)·n			
Layers	ayers 0		2	3	4	5
Pipes	90	217	344	471	598	725
Nodes	37	74	111	148	185	222
Loops	54	198	342	486	630	774
Equations	(37-1)+ (54)	(74-1)+ (198-54*1)	(111-1)+ (342-54*2)	(148-1)+ (486-54*3)	(185-1)+ (630-54*4)	(222-1)+ (774-54*5)

Appendix

Bypass Gap 2 mm – Cross Gap 0 mm, Bypass Gap 6 mm – Cross Gap 0 mm

Appendix

Bypass Gap 6 – 2 – 4 – 2 mm – Cross Gap 2 mm

Graphite bocks

Comparison of Fuel Block Type (Groehn 1981, Kaburaki 1990)

	German HTGR	Japanese HTTR	PMR200
Block type	Multi-hole type	Pin-in-block type (annular coolant hole)	Multi-hole type
Number of coolant channel	72	12, 15, 33	108
Channel diameter	18 mm 53 mm, 56 mm, 42 mm		16 mm
Cross section of fuel block		Dowel Do	

⇒ different leakage perimeter

 \Rightarrow different cross flow loss coefficient

17 440

· Area of the cross gan

Λ

Existing cross flow loss coefficient correlations

• H. G. Groehn (1981)

$$K = \left(\frac{A_{Gap}}{A_{CH}}\right)^2 \left[3.58 \left(\frac{\delta}{D_{CH}}\right)^{-2.3} \cdot 6.33 \left(\frac{A_{Gap}}{\delta \cdot l}\right)^{-1.68}\right]^{-1.68} \right] \qquad \begin{array}{l} A_{Gap} \\ A_{CH} \\ \delta \\ D_{CH} \\ \end{array} \quad \begin{array}{l} A_{Gap} \\ A_{CH} \\ \delta \\ D_{CH} \\ \end{array} \quad \begin{array}{l} A_{Gap} \\ A_{CH} \\ \delta \\ D_{CH} \\ \end{array} \quad \begin{array}{l} A_{Gap} \\ A_{CH} \\ \delta \\ D_{CH} \\ \end{array} \quad \begin{array}{l} A_{Gap} \\ A_{CH} \\ \delta \\ D_{CH} \\ \end{array} \quad \begin{array}{l} A_{Gap} \\ A_{CH} \\ \delta \\ D_{CH} \\ \end{array} \quad \begin{array}{l} A_{Gap} \\ A_{CH} \\ \delta \\ D_{CH} \\ \end{array} \quad \begin{array}{l} A_{Gap} \\ A_{CH} \\ \delta \\ D_{CH} \\ D_{CH} \\ \end{array} \quad \begin{array}{l} A_{Gap} \\ A_{CH} \\ \delta \\ D_{CH} \\ D_{CH} \\ \end{array} \quad \begin{array}{l} A_{Gap} \\ A_{CH} \\ \delta \\ D_{CH} \\ D_{CH$$

- Since Groehn's experiments is for turbulence (4200 < Re < 160000), the correlation includes only geometrical information but flow information.
- Hideo Kaburaki (1990)

K	$C = \left(\frac{A_{Gap}}{\delta}\right)^2$	$\left(\frac{C_1}{\delta \operatorname{Re}_{Gap}}\right)$	$+C_2$	Dowel		50 Coelant Coe
		C ₁	C ₂		10000	
	Type I	0.67	3.13			0000
	Type II	0.90	2.0	Type I	Type II	Type III
	Type III	0.78	1.7	iype i	· y P C 11	1990 m

