

Development of Methodology for Measuring Liquid Film Thickness Based on Three-ring Conductance Method

Kyu-Byoung Lee ^{a,b}, Chi-Jin Choi ^b, Jong-Rok Kim ^c, Dong-Jin Euh ^c, Goon-Cherl Park ^b, Hyoung-Kyu Cho ^b

^a Korea Institute of Nuclear Safety
^b Seoul National University
^c Korea Atomic Energy Research Institute

kblee@kins.re.kr

Contents

- **1.** Introduction
- 2. Design process of liquid film sensor
- **3.** Liquid film flow experiment
- 4. Conclusion

1. Introduction

2. Design process of liquid film sensor

- 3. Liquid film flow experiment
- 4. Conclusions

High precision two-phase flow experiment

- Various research and experiment have being conducted on the area of annular and pipe flow condition.
- ✓ Liquid film flow is one of major concerns in the nuclear safety system.

Two-dimensional film flow experiment (KAERI)

- To evaluate Interfacial & wall friction factors for two-dimensional film flow
- Scaled down (1/10 & 1/5) test sections of the unfolded downcomer

Annular flow (Damsohn et al., 2010)

KAERI fluid film experiment (Yang et al., 2015)

Introduction

Extension for more realistic experiment condition

To measure the film thickness, a liquid film sensor is demanded to have...

- **1.** Temperature varying condition
- 2. High resolution (time & space)
- 3. High flexibility
- 4. High temperature condition

Conventional sensor cannot satisfy.

Purpose of the research

-Developing a new liquid film sensor

Introduction

Wire-mesh & electrical method (Damsohn et al., 2009)

- High resolution on time and space
- High flexibility by using the FPCB (flexible printed circuit board)
 - FPCB can endure high temperature condition.
- Limitation on the temperature varying condition

Three-ring conductance method (Kim et al., 2013)

- Liquid film sensor on the temperature varying condition
- Limitation on the curved surface and high temperature

1. Introduction

2. Design process of liquid film sensor

- 3. Liquid film flow experiment
- 4. Conclusions

Design process of liquid film sensor

Design of sensor electrodes (Ring type)

- Previous design of three-ring sensor
 - ✓ Limitation in large scale integration (patterning)
- Range of the detectable film thickness
 - 0.5 ~ 3.0 mm (based on KAERI experiments)
- Electrical potential analysis for the sensor design
 - COMSOL ver. 5.1

Three-ring conductance meter (J. R. Kim et al., 2013)

COMSOL calculation result

Potential analysis result

Design process of liquid film sensor

Parallel circuitry system

- Parallel circuitry system for effective data acquisition
 - Analogous with wire-mesh circuitry system (Prasser et al., 1997)
 - Individual circuit layer of transmitter and receivers
 - Reducing the number of signal lines effectively (3×N×N(Array)=3N² → 3×N)

Parallel circuitry system

Prototype sensor

- **1. Introduction**
- 2. Design process of liquid film sensor

4. Conclusions

Experiment condition

- Identical flow condition with the KAERI experiment (1/10 scale, w/o air blowing)
 - Nozzle to plane: 25 mm
 - Pipe diameter: 21 mm
- Measurement section dimensions: 360×180 mm
 - FPCB sensor: 24×12 array (total 288 sensors)

Schematic diagram of the experimental apparatus

Water tank

Liquid film flow experiment loop

Calibration experiment

- Calibration range
 - 0.0 ~ 3.5 mm (0.5 mm step)
 - 17°C, 20 µS/cm filtered water
- Repeatability test
 - Accuracy: 1.6% (~1.5 mm), 4.0% (~3.5 mm)
- Isothermal & non-isothermal test
 - Using 20°C and 40°C water

Schematic diagram of calibration apparatus

Liquid film sensor characteristics

- Available measurement thickness
 - 0.0 ~ 3.5 mm
- Parallel circuitry with switch board
 - Inducing channel is switched automatically with trigger signal.

Liquid film flow measurement - 1 *

- Steady-state measurement
 - Averaged value for 5 seconds (1000 data)
- ✓ Water inlet velocity: 0.46, 0.84 m/s

FPCB sensor

-50

Liquid film flow measurement - 2

- Transient measurement
 - Experiment with decreasing the flow rate
- Time resolution: 0.48s
- Comparison with film flow video

Film flow video

Liquid film flow measurement - 3

- Steady-state measurement with different temperature conditions
 - Temperature variation test
 - 20 ~ 40°C measurement based on 20°C calibration data

1. Introduction

- 2. Design process of liquid film sensor
- 3. Dynamic liquid film flow experiment

4. Conclusions

Conclusions

- **1.** Feasibility of liquid film sensor was confirmed.
- 2. Ring type sensor was proposed for patterning.
- **3.** Switching circuitry was devised for large sensor system.
- 4. Dynamic & steady film flow measurement was conducted by applying FPCB sensor and switching system.
- 5. Further study will be followed to extend temperature range.

Thank You!

kblee@kins.re.kr

Appendix

Coupling with wire-mesh circuitry

Preliminary test of three-ring method on FPCB

- Conventional design of the three-ring conductance method (Kim et al., 2013)
- ✓ Fabricating on the FPCB

Appendix

Calibration result

- Test condition
 - Inducing voltage: AC 10V (1 kHz)
 - Water condition: 22°C & 5 μS/cm
- 36 different calibration curves

Verification of calibration result

Repeatability was confirmed.

Schematic diagram of the calibration experiment

Appendix

FPCB

- IT (information technology) & MEMS (micro electro mechanical systems) field
- Great flexibility and tolerance on relatively high temperature condition
- Integrated multi-layer fabrication

Various measurement technique

Temperature & strain sensor (D. J. Lichtenwalner et al., 2006)

Local pressure sensor (E. Pritchard et al., 2008)

Specific design of the sensor

The electrode design was determined by the parametric study.

Cross sectional of FPCB

Prototype FPCB sensor

Modified FPCB sensor for experiment

- Additional shielding plane to prevent the cross-talk effect
- Cross-talk: undesired effect in another circuit or channel
 - Electromagnetic interference from one unshielded twisted pair to another twisted pair, normally running in parallel.
 - Induced current could interfere the measurement of current ratio.

Prototype circuit

Modified model circuit

Prototype circuit

Modified model circuit

Crosstalk effect	Main receiver (I_1)	Near receiver (I ₂)	Far receiver (I ₃)
Prototype	-	3.13%	2.36%
Modified model	-	0.96%	0.71%

Appendix

Test for condensation experiment condition

- ✓ Steam condensation on the surface of the FPCB sensor
 - Drop wise condensation

