

# Borate glasses with high lanthanide oxides solubility for the cold crucible induction melter (CCIM) applications

#### Miae Kim and Jong Heo

Department of Material Science and Engineering & Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea





#### Introduction

- Pyro-processing and rare-earth wastes from pyro-processing
- Cold crucible induction melter (CCIM)
- Objectives
- Composition selection and experimental procedures
- Results
  - Waste loading and composition analysis
  - CCIM requirement : electrical conductivity and Chemical durability
  - Elemental distributions at surface after dissolution
- Summary



### Introduction – Pyro-processing



The composition is different from radioactive mixed wastes -> needs for development of new specified wasteforms



# Introduction : Cold Crucible Induction Melter (CCIM)



#### 울진에 건설 완료 후 운영허가 승인 받아 시운전 중

→ 침출(r): 2g/m<sup>2</sup> 이내



#### Introduction – Previous researches for rare-earth wastes

• Leached values of RE ions from glasses are very low.

46SiO<sub>2</sub> - 12Na<sub>2</sub>O - 12B<sub>2</sub>O<sub>3</sub> - 24CaO - 3CeO<sub>2</sub> - 3Nd<sub>2</sub>O<sub>3</sub> (mol%)



1300 °C / 30 min 23.5 wt% loading Normalized released value, r (g · m<sup>-2</sup>).

|                  | Element                 |                         |       |       |       |       |
|------------------|-------------------------|-------------------------|-------|-------|-------|-------|
|                  | Се                      | Nd                      | В     | Si    | Na    | Ca    |
| PCT-A<br>(7days) | 3.30 · 10 <sup>-6</sup> | 3.58 · 10⁻ <sup>6</sup> | 0.072 | 0.039 | 0.167 | 0.028 |
| MCC1<br>(35days) | LoD<br>< 0.1 ppb        | LoD<br>< 0.1 ppb        | 15.6  | 8.38  | 18.6  |       |

LoD :Limit of detection

- This glass contained only 6 mol% of RE
- We focused on high loadings of RE wastes



M. Kim, et al. J. Nucl. Mat. 467 (2015): 224-228.

Fabricate glasses wasteform to immobilize Nd<sub>2</sub>O<sub>3</sub> wastes from pyro-processing

with high waste loading
 with acceptance to CCIM



# 조성 탐색 및 선정 – Borate glasses

POHANG UNIVERSITY OF SCIENCE AND TECHN

#### Borate glasses are known for high RE solubility<sup>[1]</sup>



[1] K. Terashima et al. J. Am. Ceram. Soc., 80 [11] 2903–909 (1997)

#### **Experimental procedures**

Final batch composition (mol%)

< Experimental procedure >

(100-x) (0.25 CaO - 0.19  $AI_2O_3$  - 0.56  $B_2O_3$ ) - x  $Nd_2O_3$ (x=0, 10, 20, 30)

|                                | Mol % |      |      |      |
|--------------------------------|-------|------|------|------|
| CaO                            | 25.0  | 22.5 | 20.0 | 17.5 |
| Al <sub>2</sub> O <sub>3</sub> | 18.8  | 16.9 | 15.0 | 13.1 |
| B <sub>2</sub> O <sub>3</sub>  | 56.2  | 50.6 | 45.0 | 39.4 |
| Nd <sub>2</sub> O <sub>3</sub> | 0     | 10   | 20   | 30   |
| Total                          | 100   | 100  | 100  | 100  |

changing Nd<sub>2</sub>O<sub>3</sub> concentration : 0 - 30 mol%





(100-x) (0.25 CaO - 0.19  $Al_2O_3 - 0.56 B_2O_3$ ) - x  $Nd_2O_3$ (x=0, 10, 20, 30)



Homogeneous glasses

Characteristics

|          | 20 % 유 리                |
|----------|-------------------------|
| Density  | 2.124 g/cm <sup>3</sup> |
| Tg       | 679 °C                  |
| Hardness | 5.72 Gpa                |

Formation of crystalline phases in the glasses containing RE > (20+ $\triangle$ ) mol% (  $0 \le 10$  )



# **Results- maximum RE loading**

Evaluation of Nd<sub>2</sub>O<sub>3</sub> loading between 20 -30 mol%

Condition: 1300 °C/ 30min (at atmosphere), air quenching , 15 grams-batch

| RE addition<br>(mol%) | Homogeneous glass<br>with no crystals |  |  |
|-----------------------|---------------------------------------|--|--|
| 20                    | 0                                     |  |  |
| 22                    | 0                                     |  |  |
| 25                    | ×                                     |  |  |
| 28                    | X                                     |  |  |
| 30                    | X                                     |  |  |

Between 22~25mol%

We succeeded fabrication of the glass containing 22mol% (56.8wt%) without crystallization



### Waste loading & composition analyses - ICP-AES

> Compositions of  $Nd_2O_3$  and other components in specimens (80) (0.25 CaO - 0.19  $Al_2O_3$  - 0.56  $B_2O_3$ ) - 20  $Nd_2O_3$ 



> Most components in the specimens are similar to nominal composition

> Change between nominal and real  $Nd_2O_3$  concentration is within 4 wt%



# **Glass phase stability – crystallization**

(80) (0.25 CaO - 0.19  $AI_2O_3$  - 0.56  $B_2O_3$ ) - 20  $Nd_2O_3$ 





(a) HT : 800 ℃ / 5h (b) HT : 700 ℃ / 5h (c) HT : 600 ℃ / 5h

- Crystallization doesn't occur at the temp. below 700°C.
- 처분장 온도(동굴처분 시 20도)에 비해 높아, 본 유리는 열적으로 안



CCIM에 적용하기 위해 허용되는 전기전도도 (0.1~1 S/cm)
 이에 대응하는 온도 범위는 약 1200~1350 도



(80) (0.25 CaO - 0.19  $AI_2O_3 - 0.56 B_2O_3 - 20 Nd_2O_3$ 

 $\log\sigma = A - B/T(K)$ 

#### **Results- Electrical conductivity**

**Chemical durability test - Product Consistency Test (PCT)** 

(100-x) (0.25 CaO - 0.19 Al<sub>2</sub>O<sub>3</sub> - 0.56 B<sub>2</sub>O<sub>3</sub>) - x Nd<sub>2</sub>O<sub>3</sub> (powder, 90도, 7일) (x=0, 10, 20, 30)

(장점) 파우더 사용하여 침출 반응을 가속화 // 단기간 평가/비교 기준이 명확 (PCT 분석법) 파우더를 DIW 내에 7일(90도)간 보관 후 탈이온수에 누출된 이온 농도 측정

Normalized concentrations,  $r_i [g/m^2]$ 

 $r_i(g/m^2) = \frac{C_i}{f_i(A/V)}$ Nd

| r [g/m²] | Са    | В     | Al    | Nd                            |
|----------|-------|-------|-------|-------------------------------|
| 0%       | 0.469 | 0.677 | 0.002 | -                             |
| 10%      | 0.473 | 0.406 | 0.016 | Lod (< $5.00 \cdot 10^{-5}$ ) |
| 20%      | 0.073 | 0.067 | 0.009 | Lod (< $3.62 \cdot 10^{-5}$ ) |

- ▶ 모든 유리에서 Nd 의 Released concentrations : < 0.1 ppm
- ▷ 모든 원소가 US 기준 (r < 2g/m<sup>2</sup>) 만족
- ▶ 유리 망목 형성제인 B의 침출량은 Nd 증가에 따라 1/10 정도 감소

-> RE 첨가 시 matrix 결합 강화



**Chemical durability test – Materials characterization center (MCC)** 

(100-x) (0.25 CaO - 0.19  $AI_2O_3$  - 0.56  $B_2O_3$ ) - x  $Nd_2O_3$ (x=0, 10, 20, 30)

MCC1 test (bulk, 90도, 20일)

Bulk 시편을 사용하여 거시적 유리구조 의 영향을 고려 (ex, surface) (MCC1 분석법)

- Bulk 시편을 DIW 내에 20일(90도) 보관
- 탈이온수에 누출된 이온 농도 측정
- 표면 morphology 관찰

#### Normalized concentrations, r<sub>i</sub> [g/m<sup>2</sup>]

| r [g/m <sup>2</sup> ] | Са    | В     | A    | Nd  |
|-----------------------|-------|-------|------|-----|
| 0%                    | 20.25 | 25.91 | 1.57 | -   |
| 20%                   | 0.83  | 0.19  | 0.16 | Lod |

▶ 모든 유리에서 Nd 의 Released concentrations : < 0.1 ppm

▶ 희토류 첨가량 증가 시 1/10~ 1/100 정도로 감소



#### **Elemental distribution at surface after dissolution**

# Bulk 침출 분석 (MCC) 후 표면의 침출층에서의 원소분포 규명 25 CaO - 19 Al<sub>2</sub>O<sub>3</sub> - 56 B<sub>2</sub>O<sub>3</sub>) - 0 Nd<sub>2</sub>O<sub>3</sub> (EDS : Line scanning)



- ➤ Ca는 표면의 농도
  감소 -> 유출
  ➤ Al, O는 표면 함유량
  높음 -> Ca에 비해 유 출이 지연됨 (Al은 유 리 형성제)
- ▶ B은 EDS로 측정불가

➤ Ca 등 수식제가 먼저 침출/ 유리구조 형성에 관여하는 원소 침출지연
 ➤ Silicate 유리와 유사

#### **Elemental distribution at surface after dissolution**

# Bulk 침출 분석 (20일) 후 표면의 원소성분 분석 (EDS : Line scanning) (80) (0.25 CaO - 0.19 Al<sub>2</sub>O<sub>3</sub> - 0.56 B<sub>2</sub>O<sub>3</sub>) - 20 Nd<sub>2</sub>O<sub>3</sub>



➤ Al, O (표면농축), Ca (표면결핍) 은 Nd 첨가하지 않은 borate 유리와 거동 유사
 ➤ Nd은 Ca과 유사.

: Nd 도 유리수식제 (modifier )로 존재하며 matrix보다 앞서 용출될 가능성

: 침출 후 Nd의 표면 재응축 여부 검증 필요



> Borate glasses containing 0 - 30 mol%  $Nd_2O_3$  were fabricated.

- ➤ at 1300 °C for 30 min.
- > Maximum loading was 56.8wt% (22mol%)
- > The suitability as a wasteform was evaluated.
  - $\succ$  Crystallization didn't occur at the temperature below 700 °C
  - > The released concentration of Nd were  $\langle 0.1 \text{ ppm}$ .

After dissolution, Al, O were enriched at surface and Ca, Nd were depleted at surface.

Nd may exist as modifier in borate glasses and dissolve in a similar way with other modifiers.

