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1. Introduction 

 
It is widely known that the performance of human 

operator is one of the crucial factors that determine the 

safe operation of nuclear power plants (NPPs). The 

operation performance information system (OPIS) 

revealed that 130 (18.6%) among 698 NPP events in 

Republic of Korea between 1978 and 2015 occurred due 

to human errors [1]. The Institute of Nuclear Power 

Operations (INPO)’s operating experience database 

revealed that about 48% of the total events in world NPPs 

for 2 years (2010-2011) happened due to human errors 

[2]. The purposes of human reliability analysis (HRA) 

method are to evaluate the potential for, and mechanism 

of, human errors that may affect plant safety [3]. 

Accordingly, various HRA methods have been 

developed such as technique for human error rate 

prediction (THERP), simplified plant analysis risk 

human reliability assessment (SPAR-H), cognitive 

reliability and error analysis method (CREAM) and so 

on.  

Recently, as the advanced MCR is being adopted in 

NPPs, the operators may obtain the plant data via 

computer-based systems. Many researchers have 

asserted that procedure, alarm, and display are critical 

factors to affect operators’ generic activities, especially 

for diagnosis activities. None of various HRA methods 

was explicitly designed to deal with digital systems [4]. 

SCHEME (Soft Control Human error Evaluation 

MEthod) considers only for the probability of soft 

control execution error in the advanced MCR [5]. The 

objective of this paper is to develop a framework to 

assess operators’ diagnosis error probabilities in the 

advanced MCRs. Development of the framework has 

been performed in three steps: (1) to assess the diagnosis 

error probabilities in the advanced MCR, (2) to analyze 

PSFs, and (3) to develop the updated TRC model for 

assessing the nominal diagnosis error probabilities. 

 

2. Calculation of diagnosis error probabilities 

 

In order to calculate diagnosis error probabilities, 

firstly, diagnosis errors were investigated and their 

probabilities were estimated. 

 

2.1 Investigation of diagnosis errors 

 

Human error can be explained on the basis of the ways 

in which people process information in the complex and 

demanding situation [6]. In this study, information 

processing model provided in AHEANA (A technique 

for human event analysis) was applied. It consists of four 

cognitive activities such as monitoring & detection, 

situation assessment, response planning, and response 

implementation. Monitoring & detection is the activity 

involved in extracting information from the 

environments, situation assessment is the activity 

involved in constructing coherent, logical explanation to 

account for their observation, response planning is the 

process of making a decision as to what action to take, 

and response implementation is the specific control 

actions required to perform a task.  

Diagnosis error is defined as failure to make a correct 

decision on the required task or actions within an 

available time. Here, decision is made as a result of 

operator’s information processing. 

 

2.2 Calculation of diagnosis error probabilities 

 

For estimating the diagnosis error probabilities, the 

TRC (Time Reliability Correlation) model is widely used. 

The TRC model provides the probability of failure to 

correctly diagnose the event within time T as shown in 

Fig. 1. However, the TRC model does not consider the 

behavioral characteristics of operators in the advanced 

MCR. In this study, the TRC model is updated by using 

observed diagnosis errors in the full-scope simulator of 

the advanced MCR. Then, it is necessary to consider how 

to estimate the probability of observed diagnosis error. It 

is assumed that the probability of observed diagnosis 

error is fitted to binomial distribution [8]. The first 

assumption is that the probability for committing an error 

in performing the task is a fixed (nonrandom) but 

unknown value from 0 to 1. The second assumption is 

that the task is performed independently. 

 

 

Fig. 1. The TRC model provided in THERP [7] 

Probability mass function of binomial distribution is 

shown in Eq. (1). where, p is the probability that when a 

given task is performed (m=task opportunity), an error 
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will occur (n=the number of errors). Thus, p = n/m and 

it is a traditional equation to calculate the human error 

probability (HEP) [7]. 

 

𝒇(𝒏;𝒎, 𝒑) =
𝒎!

𝒏! (𝒎 − 𝒏)!
𝒑𝒏(𝟏 − 𝒑)𝒎−𝒏   𝒏 ∈ {𝟎, 𝟏, … ,𝐦}  (𝟏) 

 

However, when performing a quantitative assessment, 

there are some cases that no failure data exists. In order 

to predict the failure probability, zero failure estimation 

was adopted as shown in Eq. (2) [9]. 

 

 
 

where, p’ is the failure probability of zero failure data, 

while m’ is the task opportunity without any failure. 

 

3. Analysis of PSFs 

 

In performing HRA, such conditions that influence 

human performance have been represented via several 

context factors called PSFs (Performance Shaping 

Factors). PSFs are aspects of the human’s individual 

characteristics, environment, organization, or task that 

specifically decrement or improve human performance, 

thus respectively increasing or decreasing the HEPs [10]. 

In order to obtain the nominal diagnosis error 

probabilities, PSFs should be analyzed.  

PSFs derived in the paper [11] were used. They 

selected PSFs to be used in the advanced MCR, and nine 

PSFs which are stress level, action type, experience, time 

constraints, situational characteristics, procedures, 

training, HSI (Human system interfaces), and teamwork 

were chosen. For qualitatively evaluating PSFs, the work 

performed in [12] was used. They provided decision 

trees and guidelines to determine PSFs. They derived the 

most significant human factor (HF) issues, and 

developed the framework to qualitatively evaluate PSFs 

based on the derived HF issues. There are two benefits 

of the developed framework; (1) it is self-explanatory 

and easy to use, and (2) it provides better repeatability 

over time for using a large number of experts to reduce 

variability. 

For quantitatively estimating PSFs’ weighting, the 

profiling technique was adopted. The original baseline 

HEP can be obtained based on the differences in the PSF 

profile [13]. It is necessary to describe each human error 

(real) datum according to its task context, and to describe 

it in terms of PSFs. Each error datum should be also 

ideally described in terms of the same PSFs, it can create 

a PSF profile for each datum. Thus, by performing 

comparison and extrapolations between data, the 

weightings of PSFs can be obtained. The example of the 

profiling technique is shown in Fig. 2. Let us assume that 

there are two tasks, task A (the HEP=0.002) and task B 

(the HEP=0.001). If both tasks descripted by using the 

same set of PSFs, we can predict the weighting of 

training PSF by comparing two tasks. Here, we can 

expect that training PSF may affect the difference in the 

HEPs between Task A and Task B by a factor of ‘2’. 

 

 

Fig. 2. The example of PSF profiling 

There are two benefits to use the profiling technique; 

(1) it can estimate the weightings of PSFs based on real 

data, and (2) the estimation rules can be derived from the 

data themselves [13]. In this manner, we quantitatively 

estimate the PSFs’ weightings in the advanced MCR. 

 

4. Suggestion of the updated TRC model to assess 

the nominal diagnosis error probabilities 

 

Bayesian inference was applied in order to update the 

TRC model. Bayesian inference is a method to update the 

probability estimation for a hypothesis as additional 

evidence is acquired as shown in Eq. (3) [14]. 

 

 
 

where, π(θ) is prior distribution, p(y|θ) is likelihood 

distribution, p(θ|y) is posterior distribution, y is a data 

point in general, and θ is parameter of the data point’s 

distribution.  

As prior distribution, the existing TRC model was 

used. In the TRC model, the probability of diagnosis 

error is distributed log-normally [7]. For observed data, 

binomial distribution was used as likelihood distribution. 

Then, π(θ) can be described in Eq. (4) and p(y|θ) can be 

described in Eq. (5).  

 

 

 
 

where, σ is scale parameter, μ is location parameter, 

and n is the number of trials while y=0, 1, …, n. 

 

5. Application of the proposed framework 

 

In order to apply the proposed framework, the 

experiments conducted in the full-scope simulators were 

used. The simulator has very high level of fidelity 

because operators’ behavior in the simulator may be 

significantly similar to that in real operational 

environment like the MCR [15]. Here, domestic full-

scope simulator of the advanced MCR and HAMMLAB 

(HAlden huMan-Machine LABoratory) were used [16-

18]. There were total twenty-three crews participated in 

and eighteen tasks to be analyzed.  
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As a result, the diagnosis error probabilities for tasks 

were varied from 4.83E-02 to 1.00E+00 as shown in 

Table I. In Table I, only some tasks were presented. 

There were two tasks that showed the highest 

probabilities. The first task (HFE #5) was performed 

under the situation that there were insufficient procedure 

and insufficient indicators. Also, operators didn’t 

experience this situation. The second task (HFE #14) was 

performed under the situation that the indicator 

malfunctioned and the available time for diagnosis was 

short. Also, operators didn’t experience this situation. 

 

Table I: The example of estimation result for observed 
diagnosis error probabilities  

In the case of quantitatively estimating PSFs’ 

weightings, the result is shown in Table II. As a result, 

the teamwork PSF was the most influential to increase 

failure probability. When teamwork PSF was ‘poor’, 
most crews failed to correctly diagnose the necessary 

actions. In the case of procedure and time constraints 

PSFs, the weightings were also higher than other PSFs. 

When operators perform the diagnostic activities, those 

two were the crucial PSFs as addressed in many papers. 

In the case of experience and stress level PSFs, the 

weightings were slightly lower to those in THERP. It 

seems that because the advanced MCR is designed to 

enhance human performance, the effects of those PSFs 

to the diagnosis error probabilities might be reduced [19]. 

 
Table II: The example of estimation result for observed 

diagnosis error probabilities  

PSFs Weightings  

in this 

research 

Weightings 

provided in 

THERP 

Teamwork [Good-> Poor] 11.00 X 

Time constraint [Positive-> 

Negative], 

Training [Good-> Rare] 

5.72 X 

HSI [Good-> Poor] 1.03 X 

Procedure [Good-> Poor] 2.50 X 

Stress level 

[Moderately high -> 

Extremely high] 

2.15 2.50 

Experience [Skilled->Not-

skilled] 

1.39 2.00 

Time constraint  

[‘20<T ≤ 40 minutes’ -> 

‘T≤20 minutes’] 

3.00 X 

Time constraint  

[‘T>40minutes’ -> 

‘20<T≤40 minutes’] 

0.59 X 

 

Finally, the TRC model was updated by using 

diagnosis error collected from the full-scope simulator as 

shown in Fig. 3. (1) At 1 and 10 minutes, the updated 

median HEP for diagnosis was lower than the one 

provided in the existing TRC model. Even the available 

time for diagnosis was short, no crews made failure. (2) 

At 20 minutes, the updated median HEP for diagnosis 

was higher than the one provided in the existing TRC 

model. Even there was no PSFs estimated as ‘poor’, 
there was a crew that made failure. (3) At 30 and 60 

minutes, the updated median HEP for diagnosis was 

similar to the one provided in the existing TRC model. 

When there was no PSFs estimated as ‘poor’, every crew 

made no failure. 

 

 

Fig. 3. The result of updating the TRC model 

 

6. Conclusions 

 

Recently, the necessity of developing HRA methods 

in various conditions of NPPs has been raised. In this 

research, the framework to estimate diagnosis error 

probabilities in the advanced MCR was suggested. The 

assessment framework was suggested by three steps. The 

first step is to investigate diagnosis errors and calculate 

their probabilities. The second step is to quantitatively 

estimate PSFs’ weightings in the advanced MCR. The 

third step is to suggest the updated TRC model to assess 

the nominal diagnosis error probabilities. Additionally, 

the proposed framework was applied by using the full-

scope simulation. Experiments conducted in domestic 

full-scope simulator and HAMMLAB were used as data-

source. Total eighteen tasks were analyzed and twenty-

three crews participated in. Based on collected diagnosis 

error, the weightings of PSFs and the updated TRC were 

 Task ID The number 

of errors 

The number 

of crews 

The probability 

of diagnosis 

error 

HFE #1 0 7 9.32E-02 

HFE #2 0 8 8.30E-02 

HFE #4 3 8 3.75E-01 

HFE #5 9 9 1.00E+00 

HFE #8 1 14 7.14E-02 

HFE #9 1 14 7.14E-02 

HFE #12 0 14 4.83E-02 

HFE #14 7 7 1.00E+00 

HFE #17 7 10 7.00E-01 

HFE #18 0 7 9.43E-02 
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suggested. It is difficult to conclude that the suggested 

PSFs’ weightings and the updated TRC model are 

reasonable so far. When sufficient data is accumulated, 

the weightings of PSFs will be more accurate and reliable. 
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