A Study on Temperature Distribution in the Hot Leg Pipes considering the Variation of Flow Rate in RCS

Hyuksu Cho, Kunwoo Yi, Yoonjae Choe, Hocheol Jang, Seokjeong Yune, Seongchan Park

Contents

- 1. Introduction
 - Configuration of geometry model
- 2. Numerical Analysis
 - Grid generation
 - Boundary condition
 - Fuel Modeling
- 3. Results
 - Grid & Turbulence model sensitivity
 - Temperature distributions & Maximum temperature
- 4. Conclusions

Introduction

\diamondsuit The purpose of this study is:

- There is a deviation in temperature distribution in the hot leg pipe due to the sudden changes in the flow direction and area from the reactor core exit to the hot leg pipe.
- The non-uniform temperature distribution in the hot leg pipe can affect the measurement of the plant parameters such as the reactor power and the reactor coolant flow rate.
- In this study, a computational analysis is performed to predict the deviation in the temperature distribution in the hot leg pipe according to the flow rate variation in RCS.

Configuration of geometry model

- RTDs are installed at 5.77m away from the vertical center line of RV.
- The wall boundary of reactor outside is adiabatic condition.

Coolant flow path from core exit plane to RTDs location

Circumferential location of RTDs

Schematic diagram of APR1400 RV

(Sensing location)

Grid Generation

- Polyhedral elements are used
- Three grid sizes are generated
- Porous medium method is used for reactor core
- The ¹/₂ model of the reactor vessel is used

Grid test	Coarse	Medium	High
Number of Grid	37x10 ⁶	61x10 ⁶	70x10 ⁶

- A mesh with 37x10⁶ cells was generated, "coarse mesh"
- Maximum $y^+ > 30$, refinements in RVI internal structure
- Using medium mesh,

refine internal fluid volume and prism layer, "fine mesh"

Boundary Condition

- Core Thermal Power: 3983 MWt, (¹/₂ Core Thermal Power: 1,991.5 MWt)
- Fully developed profile with a temperature of 290.6 °C and a pressure of 15.51 MPa
- The water is discharged with a temperature of 323.9 °C on operation condition
- All of the outside walls were treated as adiabatic smooth walls obeying the no-slip conditions
- The symmetry plane on both sides of a half model is adopted symmetry conditions
- Inlet flow is applied at a flow rate condition of the pump discharge, which is divided into four equal parts in the 5,231.2 kg/s

		Value	Unit
Thermal power		1,991.5	(MWth)
Operation pressure		15.51	(MPa)
Temperature	T _{cold}	290.6	°C
Mass flow rate		10,462.4	Kg/s

Water properties used to IAPWS-IF97 steam table

Fuel Modeling

Relative Power Density of Fuel

Effective thermal conductivity

$$\rho_{s}c_{ps}(1-\varepsilon)\frac{\partial\langle T\rangle^{s}}{\partial t} = k_{s}(1-\varepsilon)\nabla^{2}\langle T\rangle^{s} - \nabla\left[\frac{1}{V}\int_{s}k_{s}Tds\right] - \frac{1}{V}\int_{s}k_{s}Tds$$

$$(\rho c_p)_{sf} = (1 - \varepsilon)\rho_s c_{ps} + \varepsilon \rho_f c_{pf}$$

 $k_{sf,xx-yy-zz} = (1 - \varepsilon)k_s + \varepsilon k_f$

Sensitivity of grid & turbulence models

Results of Grid Test

- Three parameters are compared in three cases of
 - Pressure drop in reactor vessel
 - Absolute pressure at reactor bypass flow path
 - Average temperature
 - Realize k-ɛ turbulence model

In order to evaluate mesh independence, all simulations are monitored with the temperature distribution and the average absolute pressure at RTDs location installed in hot leg pipe.

Temperature distribution & max. temperature

- The measured positions are the five measurement points (from 3.04m to 5.58m) according to the z-axis direction from the origin.
- The plane average temperatures of RTD location on the range of flow rates in RCS are 323.64 °C (100% QD), 322.25 °C (105% QD) and 320.94 °C (110% QD), respectively. The standard deviation for each location is about 0.91 with a constant deviation.

Temperature distribution & max. temperature

Temperature distribution - Z-section (a) 100% QD, (b) 105% QD, (c) 110% QD)

Temperature distribution & max. temperature

Temperature distribution - Y-section (a) 100% QD, (b) 105% QD, (c) 110% QD)

Conclusions

The non-uniform temperature distribution in the core exit is sustained to some extent through the entire region of hot leg pipe.

- The temperature ranges having a uniform pattern are 45 ~ 120° and 240 ~ 315°. The sensor positions of RTDs are located in this interval (45 ~ 120° and 240 ~ 315°) and this sensor positions of RTDs show the appropriate temperature measurement. Also, the temperature distribution shows the similar pattern without reference to the flow rate variation in RCS.
- In the future, the various turbulence models under the steady state condition will be performed in order to evaluate the effect of turbulent flows.

