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1. Introduction 
 

As more and more digital instrumentation and control 
(I&C) systems are introduced to nuclear power plants 
(NPPs), the need for effective risk assessment of digital 
I&C systems is also growing. Kang et al. [1] provided 
an overview of the risk quantification issues related to 
the digitalized safety systems in NPPs, and the fault 
coverage was one of them. Kim and Lee [2] identified 
important factors affecting the fault coverage of digital 
I&C systems, and found that system-related factors such 
as hardware, software, input/system state, and fault 
detection algorithm, and fault-related factors such as 
fault type, fault location, fault occurrence time, and fault 
duration affects fault coverage. 

One of the most widely used methods for estimating 
fault coverage is the fault injection experiment. After 
intentionally injecting a fault into a system, it is 
observed whether the system functions properly or not. 
Such experiments are repeatedly performed to produce 
statistically meaningful measures on fault coverage. 
Because of the large number of experiments, often the 
attention is given to the final result of each experiment, 
rather than how the final result of each experiment was 
achieved. 

This paper is intended to provide a somewhat closer 
look at some degree of details on how a specific fault 
injection experiment arrived at the specific result that 
will be used as a single data point out of thousands or 
sometimes millions that will be used to quantify the 
fault coverage of a digital I&C system.  

 
 

2. Methods and Results 
 

2.1 Fault injection experiment 
 
The example digital system equips with a 32-bit 

central processing unit (CPU), which is the type of 
CPUs that is widely used in modern digital I&C systems, 
and executing quick sort software, which is widely used 
in many previous fault injection experiment studies such 
as Nicolescu et al.[3]. The initial input set to the digital 
system is set as {9,8,7,6,5,4,3,2,1}. Without injecting a 
fault into the digital system, the digital system provide 
the calculation result of {1,2,3,4,5,6,7,8,9} after 
executing 863 steps.  

Fig. 1 shows the result of example fault injection 
experiments on the example digital system. Stuck-at-0 
faults were injected into 16 different registers in the 
CPU, and therefore faults were injected into 512 

different locations. About 79% of the injected faults did 
not affect the final calculation result and the number of 
execution steps. About 13% of the injected faults 
resulted in the software hang, i.e. the software did not 
produce its calculation result in a predefined time 
interval. About 8% of the injected faults resulted in the 
wrong output, i.e. the software successfully terminated 
its execution for the input but produced incorrect 
calculation results. From the safety viewpoint, the 
wrong output is considered to be most threatening.  

 

 
Fig. 1. Results of example fault injection experiments on the 
resistors of a digital system 

 
When a stuck-at-0 fault is injected into the 0th bit of 

the R0 register of the CPU, the calculated finishes after 
the execution of 1075 steps and the final calculation 
result was {0,2,2,4,4,6,6,8,0x3000011C}. Therefore, 
the injected fault resulted in one case of about 8% of 
wrong output cases. In an ordinary fault injection 
experiments for the purpose of estimating the fault 
coverage of a digital system, further details would 
seldom reviewed.  

 
2.2 Effect of an injected fault 

 
For the purpose of understanding how the stuck-at-0 

fault injected into the 0th bit of the R0 register of the 
CPU affect the execution of the software, the process of 
how the calculation is performed is analyzed in more 
detail. It is found that up to 108 steps, what are written 
in the R0 register are all even numbers such as 0, 
0x300000B8, and 0x30000230. The first discrepancy 
between the fault free execution and the execution with 
the stuck-at-0 fault at the 0th bit of R0 register occurs 
when the software tries to write the number 9 to the R0 
register, which results in 8 being written in the R0 
register due to the injected fault. The discrepancy 
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remains until the software tries to write an even number 
(0x30000230) to the R0 register. 

 

 
Fig. 2. Change of executed memory addresses as a function of 
execution steps for the fault free execution and the execution 
with stuck-at-0 fault at the 0th bit of the R0 register (SA-R0-
00). 

 
Fig. 2 shows the change of executed memory 

addresses as a function of execution steps for the fault 
free execution and the execution with stuck-at-0 fault at 
the 0th bit of the R0 register. Such discrepancies 
described above occur five times between 110th step and 
160th step while the executed memory addresses of the 
fault free execution and the execution with the injected 
fault remain same. The five time discrepancies 
correspond to the number of odd numbers in the input 
set to the digital system. 

Another discrepancy occurs after 200th step when the 
software tries to write an odd number but eventually an 
even number is written in the R0 register due to the 
injected fault. It is worth to note that the executed 
memory addresses between the two execution cases 
remain same until around 260th step. This means that 
even though some data in the registers or memory may 
differ from the fault-free execution, the two execution 
cases execute the same binary codes. After around the 
260th step, the two execution cases start to execute 
different memory addresses, i.e. different binary codes, 
and therefore the final calculation results of the two 
execution cases differ from each other.  

Fig. 3 shows the change of executed memory 
addresses as a function of execution steps for the fault 
free execution and the execution with stuck-at-0 fault at 
the 1st bit of the R0 register. Discrepancy occurs when 
the software tries to write the number 2 to R0 register 
but eventually 0 is written in the R0 register due to the 
injected fault. From that point on, it can be seen in Fig. 
3 that the two execution cases execute different memory 
addresses, i.e. different binary codes. The injection of 
stuck-at-0 fault to the 1st bit of the R0 register resulted 
in a software hang, i.e. the software could not provide 
the final calculation result in a predefined time period. 

 

 
Fig. 3. Change of executed memory addresses as a function of 
execution steps for the fault free execution and the execution 
with stuck-at-0 fault at the 1st bit of the R0 register (SA-R0-
01). 

 
 

3. Conclusions 
 

The importance of fault coverage in risk assessment 
of digital I&C systems has led our attention to fault 
injection experiments. While we have mainly focused 
on the quantitative measure of fault coverage by 
statistically treating the results of fault injection 
experiments, it seems that little attention is given on 
understanding how each fault occurring in a digital 
system affect the functioning of the digital system.  

By reviewing somewhat detailed information on the 
process of executing binary codes under the existence of 
injected faults, it is found that it is important to clearly 
identify when, where, and how the injected fault affects 
the execution of the binary codes and produces 
discrepancies compared to the case of fault-free 
execution. Even though this analysis is conducted on 
one of the simplest form of fault injection experiments, 
it is expected that the findings can be applicable to fault 
injection experiments on more complicated real-world 
digital I&C systems for nuclear power plants. 
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