
Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 27-28, 2016

Analysis on the Effect of Injected Faults to the Functioning of a Digital System

Man Cheol Kim a∗
a School of Energy Systems Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Korea, 06974

*Corresponding author: charleskim@cau.ac.kr

1. Introduction

As more and more digital instrumentation and control
(I&C) systems are introduced to nuclear power plants
(NPPs), the need for effective risk assessment of digital
I&C systems is also growing. Kang et al. [1] provided
an overview of the risk quantification issues related to
the digitalized safety systems in NPPs, and the fault
coverage was one of them. Kim and Lee [2] identified
important factors affecting the fault coverage of digital
I&C systems, and found that system-related factors such
as hardware, software, input/system state, and fault
detection algorithm, and fault-related factors such as
fault type, fault location, fault occurrence time, and fault
duration affects fault coverage.

One of the most widely used methods for estimating
fault coverage is the fault injection experiment. After
intentionally injecting a fault into a system, it is
observed whether the system functions properly or not.
Such experiments are repeatedly performed to produce
statistically meaningful measures on fault coverage.
Because of the large number of experiments, often the
attention is given to the final result of each experiment,
rather than how the final result of each experiment was
achieved.

This paper is intended to provide a somewhat closer
look at some degree of details on how a specific fault
injection experiment arrived at the specific result that
will be used as a single data point out of thousands or
sometimes millions that will be used to quantify the
fault coverage of a digital I&C system.

2. Methods and Results

2.1 Fault injection experiment

The example digital system equips with a 32-bit

central processing unit (CPU), which is the type of
CPUs that is widely used in modern digital I&C systems,
and executing quick sort software, which is widely used
in many previous fault injection experiment studies such
as Nicolescu et al.[3]. The initial input set to the digital
system is set as {9,8,7,6,5,4,3,2,1}. Without injecting a
fault into the digital system, the digital system provide
the calculation result of {1,2,3,4,5,6,7,8,9} after
executing 863 steps.

Fig. 1 shows the result of example fault injection
experiments on the example digital system. Stuck-at-0
faults were injected into 16 different registers in the
CPU, and therefore faults were injected into 512

different locations. About 79% of the injected faults did
not affect the final calculation result and the number of
execution steps. About 13% of the injected faults
resulted in the software hang, i.e. the software did not
produce its calculation result in a predefined time
interval. About 8% of the injected faults resulted in the
wrong output, i.e. the software successfully terminated
its execution for the input but produced incorrect
calculation results. From the safety viewpoint, the
wrong output is considered to be most threatening.

Fig. 1. Results of example fault injection experiments on the
resistors of a digital system

When a stuck-at-0 fault is injected into the 0th bit of

the R0 register of the CPU, the calculated finishes after
the execution of 1075 steps and the final calculation
result was {0,2,2,4,4,6,6,8,0x3000011C}. Therefore,
the injected fault resulted in one case of about 8% of
wrong output cases. In an ordinary fault injection
experiments for the purpose of estimating the fault
coverage of a digital system, further details would
seldom reviewed.

2.2 Effect of an injected fault

For the purpose of understanding how the stuck-at-0

fault injected into the 0th bit of the R0 register of the
CPU affect the execution of the software, the process of
how the calculation is performed is analyzed in more
detail. It is found that up to 108 steps, what are written
in the R0 register are all even numbers such as 0,
0x300000B8, and 0x30000230. The first discrepancy
between the fault free execution and the execution with
the stuck-at-0 fault at the 0th bit of R0 register occurs
when the software tries to write the number 9 to the R0
register, which results in 8 being written in the R0
register due to the injected fault. The discrepancy

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 27-28, 2016

remains until the software tries to write an even number
(0x30000230) to the R0 register.

Fig. 2. Change of executed memory addresses as a function of
execution steps for the fault free execution and the execution
with stuck-at-0 fault at the 0th bit of the R0 register (SA-R0-
00).

Fig. 2 shows the change of executed memory

addresses as a function of execution steps for the fault
free execution and the execution with stuck-at-0 fault at
the 0th bit of the R0 register. Such discrepancies
described above occur five times between 110th step and
160th step while the executed memory addresses of the
fault free execution and the execution with the injected
fault remain same. The five time discrepancies
correspond to the number of odd numbers in the input
set to the digital system.

Another discrepancy occurs after 200th step when the
software tries to write an odd number but eventually an
even number is written in the R0 register due to the
injected fault. It is worth to note that the executed
memory addresses between the two execution cases
remain same until around 260th step. This means that
even though some data in the registers or memory may
differ from the fault-free execution, the two execution
cases execute the same binary codes. After around the
260th step, the two execution cases start to execute
different memory addresses, i.e. different binary codes,
and therefore the final calculation results of the two
execution cases differ from each other.

Fig. 3 shows the change of executed memory
addresses as a function of execution steps for the fault
free execution and the execution with stuck-at-0 fault at
the 1st bit of the R0 register. Discrepancy occurs when
the software tries to write the number 2 to R0 register
but eventually 0 is written in the R0 register due to the
injected fault. From that point on, it can be seen in Fig.
3 that the two execution cases execute different memory
addresses, i.e. different binary codes. The injection of
stuck-at-0 fault to the 1st bit of the R0 register resulted
in a software hang, i.e. the software could not provide
the final calculation result in a predefined time period.

Fig. 3. Change of executed memory addresses as a function of
execution steps for the fault free execution and the execution
with stuck-at-0 fault at the 1st bit of the R0 register (SA-R0-
01).

3. Conclusions

The importance of fault coverage in risk assessment
of digital I&C systems has led our attention to fault
injection experiments. While we have mainly focused
on the quantitative measure of fault coverage by
statistically treating the results of fault injection
experiments, it seems that little attention is given on
understanding how each fault occurring in a digital
system affect the functioning of the digital system.

By reviewing somewhat detailed information on the
process of executing binary codes under the existence of
injected faults, it is found that it is important to clearly
identify when, where, and how the injected fault affects
the execution of the binary codes and produces
discrepancies compared to the case of fault-free
execution. Even though this analysis is conducted on
one of the simplest form of fault injection experiments,
it is expected that the findings can be applicable to fault
injection experiments on more complicated real-world
digital I&C systems for nuclear power plants.

REFERENCES

[1] H. G. Kang, M. C. Kim, S. J. Lee, H. J, Lee, H. S. Eom, J.
G. Choi, S-C, Jang, An overview of risk quantification issues
for digitalized nuclear power plants using a static fault tree,
Nuclear Engineering Technology, Vol.41, p. 849, 2009.
[2] M. C. Kim, S. J. Lee, Important factors affecting fault
detection coverage in probabilistic safety assessment of digital
instrumentation and control systems, Journal of Nuclear
Science and Technology, Vol.51, p.809, 2014.
[3] B. Nicolescu, Y. Savaria, R. Velazco, Software detection
mechanisms providing full coverage against single bit-flip
fault, IEEE Transactions on Nuclear Science, vol.51, p.3510,
2004.

