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1. Introduction 

 
The use of probabilistic safety assessment (PSA) 

technology should be increased to the extent supported 
by the state-of-the-art in PSA methods and data and in a 
manner that complements deterministic regulatory 
approach. The treatment of uncertainty is an important 
issue for regulatory decisions. Uncertainties exist from 
knowledge limitations. A probabilistic approach has 
exposed some of these limitations and provided a 
framework to assess their significance and assist in 
developing a strategy to accommodate them in the 
regulatory process. The uncertainty analysis (UA) is 
usually based on the Monte Carlo method.  

This paper proposes a Monte Carlo UA approach to 
calculate the mean risk metrics accounting for the 
SOKC between basic events (including CCFs) using 
efficient random number generators and to meet 
Capability Category III of the ASME/ANS PRA 
standard.  

 

2. State-of-knowledge Correlation (SOKC) 
 
2.1 Uncertainties associated with PSA 
 

An important aspect in understanding the PSA results 
is knowing the sources of uncertainty and assumptions 
and understanding their potential impact. Uncertainties 
can be either parameters or model uncertainties, and 
assumptions can be related either to PSA scope and 
level of detail or to model uncertainties. 

The ASME/ANS standard on PSA[1] requires that 
both parameter and model uncertainties be addressed. 
For example, parameter uncertainties are addressed via 
the quantification process of the core damage and large 
early release frequencies and model uncertainties also 
have to be identified and characterized. The ASME/ 
ANS standard notes the following: 

For CCs II and III, the mean and the distribution for 
the risk metric estimates are usually obtained by 
propagating the parameter uncertainties of the PRA 
inputs through the analysis using the Monte Carlo or 
similar sampling method.   
The difference between CC II and CC III is that in 
CC II the propagation of the uncertainty is only 
carried out for significant contributors in the 
significant accident sequences and cutsets, while for 
CC III the uncertainty distribution for all the input 
parameters is propagated to obtain the mean of the 
risk metrics as well as their uncertainty distributions. 

 

Generally speaking, there are two main types of 
uncertainty; aleatory and epistemic. Aleatory 
uncertainty is based on the randomness of the nature of 
the events or phenomena and cannot be reduced by 
increasing the analyst’s knowledge of the systems being 
modeled. The different types of epistemic uncertainty 
are completeness, parameter, and model uncertainty. 
 
2.2 Treatment of parameter uncertainty 
 

NUREG-1855[2] is provided on how to address the 
treatment of parameter uncertainty when using PSA 
results for risk-informed decision-making. NUREG-
1855 addresses the characterization of parameter 
uncertainty; propagation of uncertainty; assessment of 
the significance of the state-of-knowledge correlation 
(SOKC); and comparison of results with acceptance 
criteria or guidelines. NUREG-1855 notes the 
following: 

In carrying out the propagation, it is important to 
consider the state of knowledge correlation (SOKC) 
between events. The SOKC arises because, for 
identical or similar components, the state-of-
knowledge about their failure parameters is the same. 
In other words, the data used to obtain mean values 
and uncertainties of the parameters in the basic event 
models of these components may come from a 
common source and, therefore, are not independent, 
but are correlated. 
When the basic event mean values and uncertainty 
distributions are propagated in the PSA model 
without accounting for the SOKC, the calculated 
mean value of the relevant risk metric and the 
uncertainty about this mean value will be 
underestimated. The values can be underestimated 
due to the effect of the SOKC directly, as well as 
due to incorrect screening out of cutsets in 
truncation due to neglect of the SOKC in calculating 
cutset frequencies. 

 
2.3 SOKC 
 

Two of the fundamental premises on which 
probabilistic analyses are constructed are that: 1) the 
basic events of the logic model are random, 
independent variables, and 2) the mean values can be 
propagated through the logic models. There are at least 
two challenges to these premises: correlated data and 
common-cause failures. 

The correlated data effect is a statistical effect that 
occurs when a pool of data is used to characterize the 
uncertainty distribution for all components of a certain 
type. Correlated data implies that the same distribution 
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applies to all of these components when they are 
sampled using a Monte Carlo approach. The effect of 
correlated variables is a higher mean value than the 
point estimate value.  

EPRI 1009652[3] notes that a significant number of 
internal events PSAs have propagated the parametric 
uncertainties through the model including the state-of 
knowledge correlation. The analyses have resulted in 
very small differences between the point estimate 
calculation and the Monte Carlo evaluation, as shown 
in Table I. 
 
Table I.  Comparison of mean and point estimate values 

 
 

There are two reasons SOKC tends to be of low 
importance in the total risk metric calculation. First, 
there tends to be a large number of diverse contributors 
to core damage frequency (CDF). As shown empirically, 
the lower the participation fraction of correlated 
variables in the risk metric, the lower the impact of 
SOKC. Second, the addition of plant-specific data to 
the PRA results in reducing the number of correlated 
data variables in the model. Therefore, extensive use of 
plant-specific data suppresses SOKC impact by 
eliminating the number of correlated variables in the 
model. 
 
2.4 Accounting for SOKC 
 

NUREG-1855 notes the following: 
The first step in accounting for the SOKC between 
basic events is identifying those events that are 
correlated and grouping them. Each identified group 
contains basic events that are correlated with each 
other because the analysts’ state-of-knowledge about 
the parameters for these events is the same. 
The groups of basic events correlated via the SOKC 
should not be confused with groups of common 
cause failures (CCFs). Although both groups 
account for statistical correlations between the 
estimates for component failure of a NPP, they 
account for different correlations. For this reason, 
accounting for one type of correlation does not 
account for the other. A group of correlated basic 
events can contain several events, including those 
modeled within a CCF group. For instance, a CCF 
group may contain one failure mode of all the 
pumps of a particular system, while a group of 
correlated basic events may encompass the same 

failure mode for all the pumps of this type within the 
NPP. Hence, both types of correlations (i.e., CCF 
and SOKC) should be included in a PRA model. 
EPRI 1009652 notes the following: 

The empirical evaluations provide insights into the 
areas of the PSA that may be influenced by SOKC 
and in turn may need to be addressed by the decision 
maker to provide an accurate representation of the 
results. The following insights are derived from 
these empirical calculations: 
• SOKC can be significant. 
• Modeling of correlated events within a CCF group 

tends to reduce the significance of SOKC. 
• The impact of SOKC on risk metrics increases as: 
– EFs increase 
– Fraction of risk metric impacted by the 

variables that have a SOKC increases 
– Number of coincident correlated variables 

increases 
• High EFs: If the model has high EFs, the 

correlation effect is generally large. It is also noted 
that the high EFs also create non-monotonic 
responses in the Monte Carlo calculation. In 
general, if the error factors are very large, >30, 
extreme care in the interpretation of the results is 
needed. 

 
3. Improved approach accounting for SOKC 
 
3.1 Efficient sampling techniques 
 

The generation of pseudo-random numbers is an 
important and common task in computer programming 
of Monte Carlo simulations. The Ziggurat algorithm[4] 
is a method for efficient random sampling from a 
probability distribution such as Normal distribution. 
The following diagram (Fig. 1) demonstrates this 
algorithm. Note that we operate on one side of the pdf 
(x ≥  0), generating both positive and negative sample 
values requires that as a final step we randomly flip the 
sign of the generated non-negative values. 

 

 
Fig. 1. Example ziggurat with 7 layers of N(0,1) 

 
The Ziggurat algorithm gives good performance by 

using a very simple rejection sampling execution path 
for the majority of sample points generated, but with 
more expensive calculations performed to maintain 
mathematical exactness in some specific corner cases 
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represented by the distribution tail and the far edges of 
the Ziggurat's rectangles. 

Latin hypercube sampling (LHS) is a statistical 
method for generating a near-random sample of 
parameter values from a multidimensional distribution. 
The LHS method is often used to construct computer 
experiments or for Monte-Carlo integration. In the 
context of statistical sampling, a square grid containing 
sample positions is a Latin square if (and only if) there 
is only one sample in each row and each column. A 
Latin hypercube is the generalization of this concept to 
an arbitrary number of dimensions, whereby each 
sample is the only one in each axis-aligned hyperplane 
containing it. 

In LHS, we must first decide how many sample 
points to use and for each sample point remember in 
which row and column the sample point was taken. 
Note that such configuration is similar to having N 
rooks on a chess board without threatening each other. 
Although more efficient than random sampling, this 
sampling strategy is more difficult to implement since 
all random samples must be generated simultaneously 
and to overcome the limitations of memory and speed. 
 
3.2 The proposed approach 
 

The first step of the proposed approach is identifying 
all basic events that are correlated and grouping them. 
In this step, we can identify the cutsets that are affected 
by SOKC effects. 

The second step is accounting for the SOKC between 
CCFs by dividing each CCF into its component failure 
and its CCF parameter. CCFs occur when multiple 
(usually identical) components fail due to shared causes. 
Typical examples of shared causes include impact, 
vibration, temperature, contaminants, miscalibration 
and improper maintenance. Although Multiple Greek 
Letters (MGL), one of parametric models for CCF, is 
generally used in Korean PSAs, we don’t have 
uncertainty information of MGL parameters. The 
probability of each CCF can be quantified through 
multiplying its component failure probability by its 
CCF parameter. This approach individually provides 
SOKC grouping of component failure probabilities and 
CCF parameters. 

The third step is propagating the parameter 
uncertainties of the PSA inputs (including SOKC 
information) through iterative Monte Carlo simulations 
with a large number of replicated runs. 
 
3.3 Application to Example PSA model 
 

In order to assess the adequacy of the proposed 
approach to NPP PSA models, an example PSA model 
is selected as follows: 
• Level 1 internal event PSA model of a plant 
• CDF : 1.093E-6/years 
• # of MCSs : 24,083 
– SOKC sets : 3,641 

– not SOKC sets : 20,442 
• # of basic events : more than 3,800 
– CCFs : more than 1,000 
– SOKC groups : 163 

 
Table II compares the effects of SOKC for Example 

PSA model. It is shown that its SOKC tends to be of 
low importance in the total risk metric calculation. 

 
Table II. MC results (from 100 runs of sample size 1E5) 

mean of mean var. of mean 

Random, SOKC 1.101E-6 1.922E-16 

Random, w/o SOKC 1.091E-6 2.176E-16 

LHS, SOKC 1.096E-6 1.260E-16 

LHS, w/o SOKC 1.088E-6 1.024E-16 

 
Table III shows the Monte Carlo simulation results 

using the proposed CCF separation model. In this 
simulation, error factors of MGL parameters are 
assumed 10. 
 
Table III. MC results using new CCF model (from 100 

runs of sample size 1E5) 
mean of mean var. of mean 

Random, SOKC 1.085E-6 1.364E-16 

Random, w/o SOKC 1.075E-6 1.395E-16 

LHS, SOKC 1.083E-6 9.697E-17 

LHS, w/o SOKC 1.073E-6 1.274E-16 

 
Table IV compares the effects of two sampling 

techniques (random sampling and LHS at specific 
sample sizes) on accuracy of CDF estimates. 

 
Table IV. Effects of sampling methods (100 runs) 

Sample size Sampling mean of mean var. of mean

1,000 
Random 1.062E-6 1.264E-14 

LHS 1.085E-6 7.527E-15 

10,000 
Random 1.086E-6 1.386E-15 

LHS 1.080E-6 7.806E-16 

100,000 
Random 1.085E-6 1.364E-16 

LHS 1.083E-6 9.697E-17 

 
The proposed approach provides a variety of 

histograms and probability density function plots. Fig. 2 
is a histogram based on distribution parameters from a 
set of MC outputs.  
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Fig. 2. Generating histogram 
 

4. Conclusions 
 

Audit calculation is needed in PSA regulatory 
reviews of uncertainty analysis results submitted for 
licensing. The proposed Monte Carlo UA approach 
provides a high degree of confidence in PSA reviews. 
All PSA needs accounting for the SOKC between event 
probabilities to meet the ASME/ANS PRA standard.  
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