
Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 27-28, 2016

Nuclear Application Programs Development and Integration for a Simulator

Hyun-Joon Park, Tae-Woo Lee
KEPCO E&C, Inc., 989-111, Daedeok-dae-ro, Yuseong-gu, Daejeon, 34057, Korea

*Corresponding author: ko42971@kepco-enc.com

1. Introduction

KEPCO E&C participated in the NAPS (Nuclear
Application Programs) development project for BNPP
(Barakah Nuclear Power Plant) simulator. The 3KEY
MASTER™ was adopted for this project, which is
comprehensive simulation platform software developed
by WSC (Western Services Corporation) for the
development, and control of simulation software.

The NAPS based on actual BNPP project was
modified in order to meet specific requirements for
nuclear power plant simulators. Considerations
regarding software design for BNPP simulator and
interfaces between the 3KM platform and application
programs are discussed.

2. Methods and Techniques

In this section, software programming methods and

techniques used to develop NAPS for BNPP simulator
are described, especially based on empirical knowledge
regarding the repeatability requirements of Nuclear
Power Plant Simulators for Use In Operator Training
and Examination [1]. Also, several ideas about software
modification and migration from actual power plants to
simulators are proposed.

2.1 Overview

3KEYMASTER (3KM) is used to develop full or
partial scope simulators and provides task level
execution rates. The ‘task’ is an execution unit that has
own logical and/or arithmetic algorithms in order to
replicate functions, conditions, and environments of
actual plant systems. The task would be a kind of
application programs configured in the 3KM
environments. Tasks receive not only process values
but also information including simulator’s operational
status parameters such as ‘Reset/Run’, ‘Snap’, ‘Stop’
and ‘Backtrack’, etc. The tasks are synchronized with
schedules of the 3KM system and generally run 12
times per second. An execution frequency of tasks
depends on specific 3KM task configurations.

NAPS for BNPP simulator is not registered as a task
of the 3KM. Instead, NAPS is synchronized with a
specific task, for example, in the Fig. 1 ‘TASK n’, in
order to interface with the 3KM indirectly.
Consequently, NAPS receives information regarding
the simulator status parameters and plant (simulator)
process data via the 3KM task. Fig.1 shows a simple
interface diagram between 3KM and NAPS.

Fig. 1. Simple interface diagram between 3KM and NAPS

2.2 Considerations for repeatability requirements

The simulator testing requirements for repeatability
state that “it shall be demonstrated that between
successive simulator tests no noticeable differences
exist with respect to time base relationships, sequences,
durations, rate, and accelerations” in the section 4.1.1 of
Nuclear Power Plant Simulators for Use In Operator
Training and Examination [1].

In order to meet the repeatability requirement for
nuclear power plant simulators, conventional
application programs built for a reference plant would
need to be modified.

In order to keep data stored in an application
program, it is necessary to determine which variables in
source codes need to be saved as an initial condition file.
Purposes of the initial condition file are to store process
data and conditions at specific point of time, and to
have users retrieve the saved data when the users want
to reset the simulator status.

The automatic local variables defined in functions
typically don’t need to be stored in the condition file
because the automatic local variables usually hold
temporary data or results in the middle point of whole
calculation progresses, and they will be updated when
the local functions are called.

In the case of global variables, they need to be saved
into the condition file because they are normally used to
preserve plant’s status or calculated results throughout
the lifetime of computer program. For the same reason,
the static variable in local function should be stored into
an initial condition data since the static variables hold
results of previous calculation and are used for next
algorithm calculation such as lag-filter, delay counter,
etc.

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 27-28, 2016

If it is difficult to determine what variables need to
be stored, one simple way is to store all or most of the
variables defined in the source codes.

2.3 Recommendations regarding repeatability

Following recommendations should be considered

when the conventional source codes are modified in
order to meet the simulator repeatability requirement.

1) Construct new data structures to store variables

that are needed to be saved into an initial
condition file.

It is recommended to define new data structures

replacing variables defined in dispersed source code
files. This will make easier to maintain modified source
codes in order to save simulator process data and status.

2) Replace local system time function calls with an

incremental counter variable.

The simulator typically does not guarantee a constant

execution interval in real time. For this reason, if the
application software performs arithmetic or logic
calculations depending on local system time, it will
raise a possibility that produces non-repeatable manner.

3) Insert error-detecting code in order to ensure the

condition file’s integrity.

Insert an error-detecting code such as CRC-32 code

into the condition file when the ‘Snap’ operation is
performed. If errors occurred in the saved file for any
reason, those errors or unintended changes to raw data
can be detected by data integrity check codes.

2.4 Considerations for syncing external application
programs

The execution of tasks registered in the 3KM
configurations is managed by a scheduler of the 3KM.

In order to design and incorporate external
application programs that are not a kind of the 3KM
tasks, following ideas should be considered.

1) An external application program should be

synced with a task of 3KM.

Both an external application and a 3KM task should

be synced using synchronization APIs provided by
system programming library. Then, the ‘inner’ task of
3KM will provide time slice needed to perform its
algorithm of the external program.

The value of ‘time slice’ depends on 3KM settings.
For example, the allocated time slice for the NAPS is
83.3 milliseconds because the 3KM task interfacing
with NAPS runs 12 times per every second. Therefore,

in order to show repeatable manner whenever user runs
the simulator, external applications shall perform their
functions during the allocated time slice.

An additional good practice for the synchronization
among those programs is to design a task and external
applications to include synchronization APIs for
application calls and returns. If it is convinced that
external applications perform their functions within the
‘time slice’, those synchronization techniques might not
be needed.

Fig. 2 shows how the 3KM and NAPS interface as
external application programs. The synchronization
APIs were used to check a call and return of functions
included in both side application programs.

Fig. 2. Interface diagram for external applications

2) In order to sync heavy external applications with

the 3KM, consider tracking time spent on
execution of programs, and reducing CPU usage
of processes.

If the external application exceeds the allocated time

slice, the application may be divided into two or three
parts in order to avoid impacting a system’s
performance.

The following programming tips are useful for
enhancing the simulator’s overall performance. Those
can be applied not only external applications, but also
direct tasks of 3KM.

• Refrain from writing unimportant log messages

to disk files. The activities related to disk access
usually take a lot of system resources.

• Remove unnecessary time delay function calls
such as ‘sleep’ in legacy codes used for nuclear
power plants.

• Turn on compiler’s optimization flags to
improve the software performance.

3. Conclusions

The repeatability is one of functional requirements

for nuclear power plant simulators.

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 27-28, 2016

In order to migrate software from actual plants to
simulators, software functions for storing and retrieving
plant conditions and program variables should be
implemented. In addition, software structures need to
be redesigned to meet the repeatability, and source
codes developed for actual plants would have to be
optimized to reflect simulator’s characteristics as well.

The synchronization is an important consideration to
integrate external application programs into the 3KM
simulator.

It is suggested that specific software modifications
applied to simulators be reflected to software programs
for actual plants, which decreases differences between
both programs, and enhances software testability.

REFERENCES

[1] American National Standards Institute, Inc., “Nuclear
Power Plant Simulators for Use In Operator Training and
Examination”, ANSI/ANS-3.5, p.7, 2009.

