

Capillary wicking effect of a Cr-sputtered superhydrophilic surface for enhancement of pool boiling critical heat flux

Hong Hyun Son, Gwang Hyeok Seo, Sung Joong Kim*

Nuclear Thermal-Hydraulics Laboratory

Hanyang University

Speaker: Hong Hyun Son (PhD student) In pursuit of Doctor's Degree at Department of Nuclear Engineering, Hanyang University

2016 Autumn KNS, Room: 103, OCT 28, 2016.

Contents

- Background and objective
- Cr-sputtered surface preparation
- Cr-sputtered surface characteristics
- Result and discussion CHF enhancement
- Summary and conclusions

Background

After the Fukushima accident, Advanced ATF (Accident-Tolerant Fuel) design

Major issues

- Improved Reaction Kinetics with Steam
- Slower Hydrogen Generation Rate
- Improved Fuel Properties
- Improved Cladding Properties
- Enhanced Retention of Fission Products

Aimed components

- Advanced fuel
- Advanced fuel cladding
 - ✓ Reduced steam reaction
 - Reduced hydrogen generation
 - Improved aging-resistance

Being considered

- Iron-based alloys
- Surface coating on Zr-based alloys
 - Manufacturing process of Zrbased alloys
 - ✓ High melting temperature
 - ✓ High neutron economy

Background

How to produce aging-resistant (FeCrAI, Cr, SiC...) thin-film layered surfaces favorable to BHT?

Background

• Previous studies (CrN, Pure Cr, SiC...)

- \checkmark Uniform and smooth particle distribution
- \checkmark No concerns for roughness
- \rightarrow reduced nucleation and wetting performance
- \rightarrow decrease in CHF

Present study (FeCrAI, Pure Cr)

- \checkmark Uniform but **rough** particle distribution
- ✓ Superhydrophilic property
- \rightarrow enhanced wetting performance
- \rightarrow increase in CHF

Hydrophilic

Hydrophilic

Roughness control

Objective

Objective

 To investigate roughness effect of Cr-layered superhydrophilic surfaces on capillary wicking and pool boiling CHF

Surface preparation Surface polishing

Surface preparation DC magnetron sputtering

Sputtering condition				
Substrate material	Substrate material SS316 plate			
Target material	Pure Chromium			
Target material	(Cr, 99.95%)			
Substrate temperature (°C)	150			
Exposure time (hour)	1			
Base pressure (Torr)	1×10 ⁻⁵			
Working pressure (Torr)	1×10 ⁻²			
DC power (W)	150 ~ 160			
Argon flow rate (sccm)	29.7			

Surface characteristics Thin film growth

Cr particle size: ~ 200 nm

• Thickness of thin film: > 1 μm

500 nm

Surface characteristics Surface roughness

Test specimen	Grit number of sandpaper	Number of measured point (-)	R _a (nm)	R _{sm} (μm)	r (-)
Cr-SP800	800	3	101±4	1.88±0.09	1.09±0.02
Cr-SP600	600	3	183±40	2.46±0.43	1.17±0.05
Cr-SP400	400	3	213±42	2.86±0.36	1.15±0.02
Cr-SP320	320	3	258±45	3.18±0.50	1.20±0.002

Surface characteristics Surface wettability

Dynamic wetting

1 µl liquid droplet

Experimental description

Pool Temperature

Sensor

Polycarbonate Cover

> Copper Electrode

Immersion – Heater

Pool boiling facility

_ _ _ _ _ _ _

T/C

Test

Specimen

٠

Data

Acquisition

System

DC Power

Supply

PC

High Speed Camera Temperature and voltage signals

Test matrix

Test specimen	Cr-layered SS316, bare SS316		
Shape and size	Flat-plate, 25X10X2 mm ³		
Grit number of sandpaper (controls base roughness)	320, 400, 600, 800		
Heating method	DC joule heating		
Test condition	Saturated at atmospheric pressure		
Working fluid	DI water (~10 MΩ-cm)		
Heater orientation	Upward-facing (horizontal)		

Nuclear Thermal-Hydraulics Laboratory

11

 CHF comparison between Cr- and FeCrAI-layered surfaces

Model comparison

(1) Kandlikar's model

Modeling parameter

Receding contact angle (β_r) (partial wetting)

$$q_{c}^{"} = h_{fg} \rho_{g}^{1/2} \left(\frac{1+\cos\beta}{16}\right) \left[\frac{2}{\pi} + \frac{\pi}{4} (1+\cos\beta)\cos\phi\right]^{1/2} \times \left[\sigma g \left(\rho_{l} - \rho_{g}\right)\right]^{1/4}$$

② Chu et al.'s model (textured)

Modeling parameter

- Receding contact angle (β_r) (complete wetting)
- Roughness factor (r=r_{micro}xr_{nano})

$$q_{c}^{"} = K \times h_{fg} \rho_{g}^{1/2} \times \left[\sigma g \left(\rho_{l} - \rho_{g}\right)\right]^{1/4}$$
$$K = \left(\frac{1 + \cos\beta}{16}\right) \left[\frac{2(1 + \alpha)}{\pi(1 + \cos\beta)} + \frac{\pi}{4} \left(1 + \cos\beta\right) \cos\psi\right]^{1/2}$$

③ Quan et al.'s model (textured)

Modeling parameter

- Receding contact angle (β_r) (complete wetting)
- Roughness factor ($r=r_{micro}xr_{nano}$)
- Solid fraction (ϕ_{s})

13
$$K_{Quan} = \left(\frac{1+\cos\theta_r}{16}\right) \left[\frac{2}{\pi} \left(1-\sqrt{\phi_s}\right)^{-\frac{1}{2}} \frac{r+\cos\theta}{1+\cos\theta} + \frac{\pi}{4} \left(1-\sqrt{\phi_s}\right)^{\frac{1}{2}} \left(1+\cos\theta_r\right)\cos\psi\right]^{\frac{1}{2}} \right]^{\frac{1}{2}} \left(1+\cos\theta_r\right) \cos\psi = \left(1+\cos\theta_r\right)^{\frac{1}{2}} \left(1+\cos$$

Conventional static force balance of Wenzel bubble

- Limit of roughness factor estimation on polished surfaces
- \checkmark **R**_a and **R**_{sm}: monotonic increase
- ✓ r: non-monotonic increase
- ✓ Surface area ratio r hardly represents monotonic CHF increase
- ✓ Sometimes lower roughness shows higher surface area ratio

 Better approach to capillary wicking flow model instead of conventional static force balance

Force balance between capillary and frictional pressures

$$\frac{2\sigma\cos\theta_{Y}}{g} - \frac{\mu}{\kappa}u_{ave}L = \frac{1}{2}\rho u_{ave}^{2}$$

Average liquid inflow velocity

$$u_{ave} = -\frac{L}{\kappa} \frac{\mu}{\rho} + \sqrt{\left(\frac{L}{\kappa} \frac{\mu}{\rho}\right)^2 + \frac{1}{2g} \frac{\sigma}{\rho}}$$

Polished surface

How to define a capillary flow channel on polished surfaces?

Capillary flow channel modeling for the polished surface

Structural parameters Peak height = $4R_a$ Peak pitch = R_{sm} **Unit cell parameters** $A_c = \frac{1}{2} (4R_a) R_{sm}$ $p_{wetted} = 2\sqrt{\left(4R_a\right)^2 + \frac{1}{4}R_{sm}^2}$ Hydraulic diameter

$D_{h} = \frac{A_{c}}{p_{wetted}} = \frac{R_{a}}{\sqrt{\left(4\frac{R_{a}}{R_{sm}}\right)^{2} + \frac{1}{4}}}$

Model validation

Dynamic wetting properties

Specimen R_a (µm) R_{sm} (µm) dD_h/dt (mm/s) ΔD_{h} (mm) R_a/R_{sm} (-) A_c (μ m²) **φ**_s (-) D_h (μ m) 0.052 0.18 2.23 **Cr-SP800** 0.101 1.933 0.39 0.08 0.47 0.16 **Cr-SP600** 0.183 2.467 0.074 0.90 0.31 2.50 0.53 0.16 **Cr-SP400** 0.213 2.868 0.074 1.22 0.36 2.63 0.49 **Cr-SP320** 0.258 3.189 0.080 1.64 0.19 0.43 3.34 0.60

Modified capillary flow model for polished surfaces

$$q_{CHF}^{"} \sim \left(\frac{2\sigma_{lv}\cos\theta}{D_{h}/2} - \frac{32\mu\frac{dD_{b}}{dt}}{\phi_{s}D_{h}^{2}}\Delta D_{b}\right)A_{c}$$
$$D_{h} = \frac{A_{c}}{p_{wetted}} = \frac{\frac{1}{2}(4R_{a})R_{sm}}{2\sqrt{(4R_{a})^{2} + \frac{1}{4}R_{sm}^{2}}}$$

- Further estimation of R_a on CHF limit of polished superhydrophilic surface
 - \checkmark Assumption: linear approximation of R_a with R_{sm}, dD_b/dt, and ΔD_b
 - ✓ Critical limit of R_a =1.3 µm → Spacing (R_{sm}) ~ 11.5 µm
 - ✓ Dhillon et al.'s estimation: Spacing ~ 10 µm

Summary and Conclusions

In this study…

- \checkmark Surface modification: thin film deposition of 1 μm Cr layer
- ✓ Surface characteristic: superhydrophilic (liquid droplet spreading)
- $\checkmark~$ CHF: enhanced up to 79 % within 0.3 $\mu m~R_a$

Major findings

- ✓ Roughness factors for polished surfaces
 - : hardly predict the CHF trend
- ✓ Better CHF prediction
 - : capillary wicking force balance instead of conventional static force balance

$$D_{h} = \frac{A_{c}}{P_{wetted}} = \frac{\frac{1}{2} (4R_{a}) R_{sm}}{2\sqrt{(4R_{a})^{2} + \frac{1}{4}R_{sm}^{2}}} \qquad q_{CHF}^{"} \sim \left(\frac{2\sigma_{lv}\cos\theta}{D_{h}/2} - \frac{32\mu \frac{dD_{b}}{dt}}{\phi_{s}D_{h}^{2}}\Delta D_{b}\right) A_{c}$$

✓ Critical R_{sm} on CHF limit ~ 11.5 µm (for polished superhydrophilic surfaces)

Thank You for Your Attention

Surface characteristics Dynamic wetting

Supplementary

- Variation of structural parameters $(R_a/R_{sm}, D_h)$ calculated using AFM data (R_a, R_{sm})

✓ R_a/R_{sm} : the worst R-square value of 0.45 ✓ D_h : the best R-square value of 0.98

> R_/R_(-) 0.15 - 1.0 10 Linear fit of R_{sm} (R-square=0.74) R_{sm} Linear fit of R_a/R_{sm} (R-square=0.45) R_a/R_{sm} 0.12 - 0.8 8 Linear fit of D, (R-square=0.98) D 0.09 -0.6 6 R_{sm} (μm) 0.06 - 0.4 2 0.03 - 0.2 0.00 - 0.0 0 0.10 0.15 0.20 0.25 0.30 0.35 $D_{\mu}(\mu m)$ $R_{\mu}(\mu m)$

Supplementary Single bubble growth in pool boiling

