Comparison of Design Concepts for SFR under Development

SUH Namduk *, CHOI Yongwon, BAE Moohoon, SHIN Andong Korea Institute of Nuclear Safety, Kwahak-ro 62, Daejon *Corresponding author: k220snd@kins.re.kr

1. Introduction

On January 2006, the President of France has fixed the year 2020 as a target year of operation for Gen-IV prototype reactor. Since then, the CEA was charged to develop the prototype reactor named ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration). The goal of ASTRID with a capacity of 600 MWe is to study the technical demonstration that can be scaled up to commercial reactor. It was expected that the success of ASTRID project could eventually lead to operation of industrial reactor around 2040. On 2012, ASTRID designer has submitted the DOrS (Dossier d'Orientations de Sûreté, Safety Orientation Document) for ASTRID to IRSN and IRSN has issued a report [1] after reviewing the DOrS. The report DOrS itself is not available publicly, intellectual property might be the reason, but the review document of IRSN is open to public, so we can understand the basic concept of ASTRID by IRSN report.

Meanwhile, the PGSFR (Prototype Gen-IV Sodium cooled Fast Reactor) of 150 MWe is also under development by KAERI. The basic design concept is presented in the Top Tier Report for PGSFR.

The DOrS reflects the lessons of Phenix/Superphenix design and operation. Thus, comparing it with the TTR for PGSFR gives a good chance to understand the level of PGSFR safety. This paper compares the design concept in DOrS for ASTRID with the TTR for PGSFR and recommends what should be pursued in PGSFR design to increase the safety level, at least to be comparable with ASTRID.

2. Design Concept of ASTRID

In this section, we will summarize some major concepts of ASTRID proposed by designer and the review comments of IRSN.

2.1 Safety Objective of ASTRID

ASTRID design	IRSN comment
The safety level of	The safety objective needs
ASTRID will be at least	to be defined
equivalent to Gen-III	quantitatively and to be
reactors and incorporate	completed taking into
the Fukushima lessons.	account the particular
Also it will integrate the	objective of ASTRID
specific improvements	demonstrator's role with

based on the experiences	
of all the past French	IV platforms.
reactors.	

2.2 Defense in Depth

ASTRID design	IRSN comment
The concept of DID will	The line of defense is
be applied in designing	useful in structuring the
the facilities for	design. IRSN will review
prevention of incidents	the principle of definition
and accidents. Line of	and the implementation
mitigation is utilized to	later. The demonstration
design the facilities to	should not rely solely on
limit the consequences of	the concept, be
accidents with core	complemented by
melting.	probabilistic analysis.
-	

2.3 Consideration of Severe Accident in Design

ASTRID design	IRSN comment
The design will reinforce	The approach is
the prevention of all the	acceptable in general. But
predictable situations	taking into account the
which could lead to severe	lessons of Fukushima, the
accident. The melting of	long term management of
fuel and the resulting	severe accident and also
consequences will be	the absence of cutting-
considered in the design	edge effect should be
as a 4 th level of DID.	assured.

2.4 Conditions of Practical Elimination

IAEA Safety Guide NS-G-1.10 [2] defines the possibility of certain conditions occurring is considered to have been practically eliminated if it is physically impossible for the conditions to occur or if the conditions can be considered with a high degree of confidence to be extremely unlikely to arise. Pursuing to be a Gen-IV platform, the concept is implemented in the ASTRID design.

ASTRID design	IRSN comment
Proposed list of	IRSN finds the
situations that should be	identification of situations,
practically eliminated and	though needs to be
facilities to prevent and	prudent at this stage of
mitigate them. The design	design, and the proposed
is based on the	approach are generally
deterministic approach,	acceptable. But the
complemented by	specific examples

probabilistic analysis. The	presented will be
essential SSCs involved in	discussed later. The
prevention and mitigation	measures for prevention
will have the highest level	and mitigation should be
of safety	particularly robust.

2.5 Integrity of Barriers

ASTRID design	IRSN comment
The design will improve	IRSN finds the improved
the core surveillance and	core surveillance will
assure that the events like	contribute to reinforce the
blockage or failure of	prevention of accidents.
cooling during the fuel	Also aiming the integrity
handling do not lead to	of cladding during these
local melting of cladding.	events will be preferable.

2.6 Design of Safety Functions

ASTRID design	IRSN comment
O Reactivity Control : The	O Reactivity Control : The
design pursues to improve	optimization of the core
the natural behaviour of	should take into account
core during transients and	also the reactivity effect of
accidents. The third	local sodium void.
automatic reactor	O Heat Removal: The
shutdown system is also	concept is acceptable and
envisaged.	the use of probabilistic
O Heat Removal: The	evaluation in the design is
diversified circuits	important. The possibility
dedicated to residual heat	needs to be considered to
removal which can	introduce the mobile
operate in case the core	measures to establish the
melts are implemented.	function when the core
	melts.
O Confinement of	O Confinement of
Radioactive and Toxic	Radioactive and Toxic
Materials: The zone with	Materials: IRSN will
radiological risk is	evaluate the design
separated with the zone	measures to achieve this
with toxic risk. This	objective, later. IRSN
requires new solution to	stresses that the fuel
handle the non-radioactive	storage and handling
sodium fire occurring in	zones need to be designed
the reactor building. The	with particular attention to
design of confinement is	increase the efficiency of
not presented yet.	confinement.

3. Review of PGSFR Design Concept

The TTR of PGSFR was developed referencing the format of SMART reactor. [3] KINS is reviewing the requirements as a part of research activities for SFR. In this section, we will introduce the basic design concepts of PGSFR and our review comments on them in view of the ASTRID design concepts mentioned in section 2 above.

3.1 Safety Objective of PGSFR

TTR proposes the safety objective as a CDF (Core Damage Frequency) of 1.0 X 10⁻⁶ /reactor-year and a

LRF (large release frequency) of 1.0 X 10⁻⁷/reactor-year. The target value is lower than the current fleet of reactors, but because the PGSFR is a first-of-a-kind reactor, the PSA data utilized in the analysis need deep and cautious evaluation. Also the safety objective as a prototype reactor which will be built to test new design features needs to be clearly defined and implemented in the design.

3.2 Defence in Depth

The DID concept will be utilized also in the PGSFR design. The concept needs to be implemented in the specific system design and the probabilistic analysis needs to complement the deterministic structuring of the line of defence.

3.3 Consideration of Severe Accident in Design

The plant will be designed to satisfy the performance criteria and the safety requirements in terms of CDF and LRF. Severe accident management guideline will be provided and the in-vessel retention of corium will envisaged. We find the proposed concept is borrowed from the current operating plants and does not clearly define the requirements expected for a Gen-IV reactor. The design implementation of in-vessel retention for SFR is not clear and needs further analysis.

3.4 Conditions of Practical Elimination

The TTR does not show the list of situations which should be practically eliminated. Considering that the PE is required already in the IAEA requirements for the current fleet of reactors and it is generally expected that the Gen-IV reactor should have at least equivalent or higher level of safety to the current reactors, the practically eliminated situations should be implemented in the PGSFR design.

3.5 Integrity of Barriers

The TTR is not structured to clearly show how the integrity of barriers will be assured. In implementing the DID in the design, it might be better restructure the TTR to show clearly the integrity of barriers will be assured.

3.6 Design of Safety Functions

The core will be designed to have a negative reactivity against the power. The residual heat removal system will be designed as a safety class and the redundancy will be secured to prevent the common cause failure.

We find the above design concept of PGSFR is not well organized and sufficient enough to satisfy the general expectations people could have for Gen-IV reactor. The residual heat needs to be removed even after accidents and the core design needs to reflect the recent research results and also the past operating experiences. The phenomenon like an abrupt shutdown by negative reactivity which occurred in Phenix needs to be considered in the core design.

4. Conclusions

The DOrS of ASTRID and the TTR for PGSFR have not the same format and also the same purpose, so it is not easy to compare the two design concepts directly. But, still, we think the concepts could be compared in a very general way. Thus, in this paper we have presented the very short comparison results of the two SFR design.

Our opinion after first reviewing the TTR is that the PGSFR needs to be designed in a more systematic way. The requirements are coming basically from the previous document used for SMART licensing and do not show prototype reactor specific characters.

Especially the design needs to be strengthened against severe accident, implementing in an affordable way the concept of practical elimination.

REFERENCES

[1] Synthèse du rapport de l'IRSN sur son analyse du dossier

d'orientation de sûreté (DOrS) du projet de réacteur ASTRID, IRSN, June 2013

[2] IAEA Safety Guide, Design of Reactor Containment Systems for Nuclear Power Plants, NS-G-1.10, IAEA, 2004
[3] Top-Tier Requirements for SMART Standard Design, 000-PT414-001, KAERI, 2010