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1. Introduction 

 
Through a variety of the nuclear power plants (NPPs) 

accidents all over the world, such as Fukushima accident, 
it has attracted a lot of public attention. Cause of this is 
because the operator does not quickly verify the status of 
the plant during an incident or accident situation, or does 
not respond appropriately to each situation. 

In this study, important parameters such as the break 
position, size, and leak flow rate of loss of coolant 
accidents (LOCAs), provide operators with essential 
information for recovering the cooling capability of the 
nuclear reactor core, for preventing the reactor core from 
melting down, and for managing severe accidents 
effectively. Therefore, in the event of post-LOCA 
situations, an algorithm to estimate leak flow rate has 
been developed to perform appropriate actions in case 
the active safety injection systems do not actuate. Leak 
flow rate should consist of break size, differential 
pressure, temperature, and so on (where differential 
pressure means difference between internal and external 
reactor vessel pressure). The leak flow rate is strongly 
dependent on the break size and the differential pressure, 
but the break size is not measured and the integrity of 
pressure sensors is not assured in severe circumstances. 

In this paper, a cascaded fuzzy neural network (CFNN) 
model is appropriately proposed to estimate the leak flow 
rate out of break, which has a direct impact on the 
important times (time approaching the core exit 
temperature that exceeds 1200oF, core uncover time, 
reactor vessel failure time, etc.). The CFNN is a data-
based model, it requires data to develop and verify itself. 
Because few actual severe accident data exist, it is 
essential to obtain the data required in the proposed 
model using numerical simulations. These data were 
obtained by simulating severe accident scenarios for the 
optimized power reactor 1000 (OPR 1000) using MAAP 
code [1]. 

 
2. Cascaded fuzzy neural networks 

 
2.1 Cascaded Fuzzy Neural Network 
 

The CFNN is based on FNN models. There have been 
a number of studies on the fusion of fuzzy logic and 
neural networks, termed FNN. Most of the existing FNN 
models have been proposed to implement different types 
of single-stage fuzzy reasoning mechanisms. However, 
single-stage fuzzy reasoning is only the most simple 
among a human being’s various types of reasoning 

mechanisms. Syllogistic fuzzy reasoning, where the 
consequence of a rule in one reasoning stage is passed to 
the next stage as a fact, is essential to effectively build up 
a large scale system with high level intelligence [2].  

The CFNN model contains two or more inference 
stages where each stage corresponds to a single-stage 
FNN module. Each single-stage FNN module contains 
fuzzification, fuzzy inference, and training units. The 
CFNN can be used to estimate the target value through 
the process of adding FNN repeatedly. In CFNN method, 
the L  stage FNN is the same as the FNN of Fig. 1. This 
stage FNN uses the initial input variables and the output 
variables of the former stages FNN as input variable. 
Therefore, this process is repeated L  times to find the 
optimum value. 
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Fig. 1. L -stage Fuzzy Neural Network (FNN) 
 
An arbitrary i -th rule of the CFNN can be expressed 

as Eq. (1): 
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 (1) 
 
where L  is the total number of stages, ( )jx k  is the 
input linguistic variable to the fuzzy inference model 
( 1, 2, ,  ;j m=   m  is the number of input variables), 

( )ijA k  is the membership function of the j -th input 

variable for the i -th fuzzy rule ( 1, 2, ,  ;i n=   n  is the 
number of rules), and ˆ ( )iy k  is the output of the i -th 
fuzzy rule.  
 The number of N  input and output training data of the 

fuzzy model ( )( ) ( ), ( )T Tz k k y k= x  (where ( ) =xT k  

1 2( ( ), ( ), , ( )) mx k x k x k and 1, 2, ,k N=  ) were 
assumed to be available and the data point in each 
dimension was normalized. In this work, Gaussian 
membership function was used and the function is 
expressed as Eq. (2). 
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where ijc  is a center position value of the function, ijs   
is a sharpness of the function. 

A product operator on the membership functions is 
expressed as Eq. (3) that is indicated as Π  in Fig. 1. 
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Eq. (4) means a normalization operation that is indicated 
as Ν  in Fig. 1. 
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The function in Eq. (5), namely, ( ( ))if x k , is expressed 
as a first-order polynomial of the input variables, i.e., the 
output of each rule is expressed as follows: 

0
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where ijq  is a weight value of the thi  fuzzy rule and  thj

input variable, 0iq  is a bias of the thi  fuzzy rule. 
At the result, the estimated value of the FIS through the 

Takagi-Sugeno-type can be expressed as follow [3]: 
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where ( )i

wy k  is performed by the product of ( )iw k  and 

( ( ))if kx . Therefore, the output of the FIS by Eq. (6) is 
expressed as the vector product as follow: 
 
ˆ( ) ( )Ty k k= w q  (7) 
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The vector q  is called a consequent parameter vector 
that has ( 1)m n+ dimensions, and the vector ( )kw  
consists of input data and membership function values. 
The estimated output for a total of N  input and output 
data pairs induced from Eq. (7) can be expressed as 
follows: 
 
ˆ =y Wq  (9) 

 
where  
 
ˆ ˆ ˆ ˆ(1) (2) ( ) Ty y y N=   y  , [ ](1) (2) ( ) TN=W w w w  

 
The output values of FIS are expressed in a matrix, W , 
of ( 1)N m n× +  dimensions and a parameter vector q  of 
( 1)m n+  dimensions. 
 
2.2 Training of Cascaded Fuzzy Neural Network 
 
The proposed CFNN model is applied to estimate the 
leak flow rate from break caused by LOCAs. The CFNN 
model is optimized by a combined method using the 
specified training data. The antecedent parameters in the 
membership function in Eq. (2) are optimized by a 
genetic algorithm. The consequent parameters in Eq. (9) 
are optimized by the least square method. In the genetic 
algorithm, the following fitness function is proposed to 
minimize the maximum and root-mean-square (RMS) 
errors in Eq. (10): 
 



Transactions of the Korean Nuclear Society Autumn Meeting 
Gyeongju, Korea, October 27-28, 2016 

 
exp( )R R M MF E Eλ λ= − −  (10) 

 
where: 

( )2

1

1 ˆ( ) ( )
tN

R
kt

E y k y k
N =

= −∑  

( )2ˆmax ( ) ( ) , 1, 2, ,M tk
E y k y k k N= − =   

Rλ : weighting value of the RMS error 

Mλ : weighting value of the maximum error 

tN : number of training data 
( )y k : actual output value 

ˆ( )y k : estimated value by FNN 
 
Consequent parameter q  is optimized by the least 
square method and is computed to minimize the 
objective function represented by the squared error 
between measured value ( )y k  and predicted value ˆ( )y k . 
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where ty  is [ (1) (2) ( )]T

ty y y N . The solution to 
minimize the objective function in Eq. (11) is expressed 
as follows: 
 

t t=y W q  (12) 
 
where tW  is [ (1) (2) ( )]T

tNw w w . The parameter 
vector q  in Eq. (12) is solved from the pseudo-inverse 
function as follows: 
 

1( )T T
t t t t

−=q W W W y . (13) 
 
Parameter vector q  is computed from a series of input 
data, output data, and their membership function values 
because matrix tW  is composed of the input data and 
membership function values, and ty  is the output data. 
 

3. Accident Simulation Data 
 

To train and independently test a proposed CFNN 
model, it is essential to obtain the data using numerical 
simulations because there are few real accident data. 
Therefore, the training and test data of the proposed 
model is acquired by simulating severe accident 
scenarios using the MAAP code regarding the OPR1000 
nuclear power plant. 

The simulation data is divided into the LOCA break 
position and break size. The break positions are divided 
into hot-leg, cold-leg, and SGTR, and the break sizes are 
divided into a total of 210 steps. The break sizes range 

from 1/10000 to half of a double-ended guillotine break 
for hot-leg and cold-leg LOCAs, and the break sizes 
range from 1 to 200 tube ruptures for SGTR accidents. 
Through the simulations, data for a total of 620 severe 
accident scenarios are obtained. These data are 
composed of the simulation data from 210 hot-leg 
LOCAs, 210 cold-leg LOCAs, and 200 SGTRs. 

The leak flow rate is much correlated with the break 
size of LOCAs. The LOCA break size is not a measured 
variable, but a predicted variable that uses trend data for 
a short time early in the event proceeding to a severe 
accident. The LOCA classification algorithm for 
determining LOCA position and the LOCA size 
prediction algorithm were proposed in previous literature 
[4]-[6]. The LOCA break size signal is assumed to be 
predicted from the algorithm of previous study [5]. The 
predicted break size can be estimated accurately using 
several measured signals for a very short time (60 sec) 
after reactor shutdown [4]-[6].  

 
4. Application 

 
During post-LOCA circumstances, it is helpful to 

provide plant personnel with information regarding leak 
flow rate from break caused by LOCAs. The input 
variables for prediction the leak flow rate are the time 
elapsed after reactor shutdown and the predicted break 
size. 

The time input to the CFNN is the time elapsed from 
the reactor shutdown instant. The break sizes are values 
predicted with RMS error of about 0.4%.  

Table I shows the performance of estimation errors of 
the LOCA break size. This table indicates that the RMS 
errors for the test data are approximately 0.052%, 
0.047%, and 0.485% for the hot-leg LOCA, cold-leg 
LOCA, and SGTR, respectively. Table II shows the 
RMS error values for FNN model [7] and the proposed 
CFNN model for the test data.  

It is important to recover the reactor core cooling by 
assuring a sufficient injection flow rate in severe post-
LOCA situations. Therefore, it is expected that the 
CFNN model that predicts the leak flow rate will be 
useful for managing severe accidents. 

 

Table I: Performance of the optimized CFNN model 

 
Training data (%) Test data (%) 

RMS error Maximum 
error RMS error Maximum 

error 
Hot-leg 
LOCA 0.033 4.345 0.052 1.335 

Cold-leg 
LOCA 0.054 8.805 0.047 0.930 

SGTR 1.302 50.780 0.485 5.082 

 

Table II: Comparison of the FNN and CFNN models for the 
test data. 
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 Fuzzy 
rules 

Test data (%) 
RMS error Maximum error 

FNN CFNN FNN CFNN 
Hot-leg 
LOCA 30 1.97 0.05 13.10 1.34 

Cold-leg 
LOCA 30 1.47 0.05 8.11 0.93 

SGTR 5 2.77 0.49 11.01 5.08 

 
 

5. Conclusion 
 

In this study, a CFNN model was developed to predict 
the leak flow rate before proceeding to severe LOCAs. 
The simulations showed that the developed CFNN model 
accurately predicted the leak flow rate with less error 
than 0.5%.  The CFNN model is much better than FNN 
model under the same conditions, such as the same fuzzy 
rules. At the result of comparison, the RMS errors of the 
CFNN model were reduced by approximately 82 ~ 97% 
of those of the FNN model. 

Therefore, it is expected that the CFNN model will be 
helpful for providing effective information for operators 
during post-LOCA situations. 
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