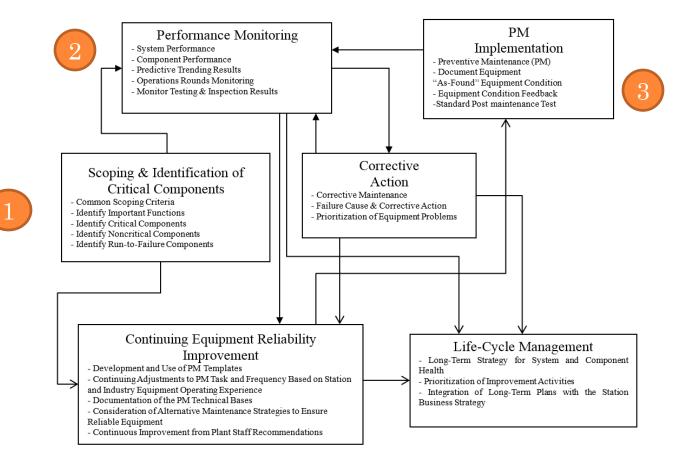

Optimization of Maintenance for the Turbine Lube Oil System in NPP

Korea Nuclear Society Autumn Meeting 26-28 October, 2016

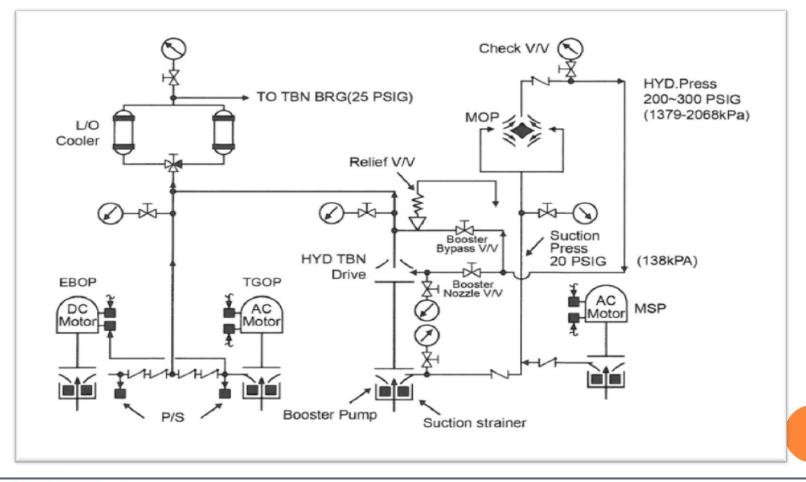
Efenji A. Emmanuel , Mohamed M. Faragalla A rigi M. Awwal , Lee Yong- kwan

INTRODUCTION

- □ The turbine lubrication oil system supply lube oil to
- the turbine / generator bearings,
- turning gears, couplings and thrust bearing.
- □ The turbine lube oil system is not a safety system, but the failure of the system could cause
- ✓ turbine trip
- unplanned power derate
- Violation of Technical Specification LCO.



- □ To propose a maintenance plan for the Turbine Lubrication (TLB) Oil System.
- □ To improve the reliability and availability of the components of the TLB Oil system
- □ To enhance the continuous operation of the plant



Equipment Reliability Process – INPO AP-913

Apr 1400 lube oil pumping system

ų

1. Scoping and Identification of Critical Components

Scoping

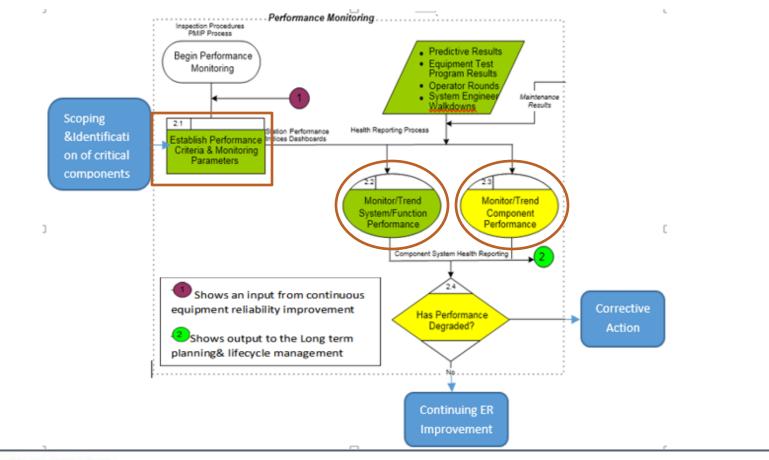
- □ The Shin Kori unit 1 NPP design (OPR 1000) was referenced
- □ 255 components were identified; 40% Valves, 17% Switches, 13% Indicators, 8% Pumps, and 5% Motors.

Critical Components Determination

- Delphi by INPO AP-913 [2]
- **Yes'** to any critical questions Critical
- 'Yes' to any non-critical questions **Non-Critical**
- Others were **Run to Failure**.

HSS and LSS Determination

The critical components were subjected to a 2nd Delphi


• The Delphi Risk Ranking Format by KHNP was used to categorize HSS and LSS [3].

Accident Response Functions	Code	Weights
Shutdown the reactor and maintain it in a safe condit ion	SF-1	7.3
Maintain the reactor coolant pressure boundary	SF-2	7.1
Remove atmospheric heat and radioactivity from containment and maintain containment integrity	SF-3	7.5
Remove heat from the reactor	SF-4	9.5
Sum of Accident Responses	-	31.4
Normal Operating Functions	Code	Weights
Provide primary side heat removal	NF-1	7.1
Power conversion	NF-2	7.8
Provide primary, secondary, or containment pressure control	NF-3	5.5
Provide cooling water, component or room cooling	NF-4	6.7
Provide electric power (AC, DC power)	NF-5	7.7
Provide other motive or control power	NF-6	5.7
Sum of Normal Operations	_	40.5
Total Sum	-	71.9

2. Performance Monitoring

• The guideline given by INPO AP-913 [2].

Performance Monitoring Plan (PMP)

- Can be developed based on Reliability, Availability, or Condition criteria.
- SSCs service and health Conditions were used for PMP.
- System Performance Monitoring Plan was based on failure modes & effect (KHNP & GE Manual).
- **Component Performance Monitoring Plan** was based on **Risk importance and duty cycle**.

RESULT

Table 1 System Performance Monitoring Plan

Failure mode	Lube oil piping failure	
Effect of failure	Turbine trip or power derate	
Degradation mechanism	Piping break or tank leakage due to vibration	
Degradation indicators	Bearing header pressure decrease	
	MOP operating pressure decrease	
	Oil tank level decrease	
Monitoring Interval	Every other week	
Action taken	Work order issued	
Failure mode	MOP/Booster pump failure	
Effect of failure	MSP and TGOP auto-start	
Degradation mechanism	Internal parts aging	
Degradation indicators	Bearing supply oil temperature increases	
	Booster pump discharge pressure decreases	
Monitoring Interval	Every other week	
Action taken	Work order issued	
Failure mode	Contamination of lube oil	
Effect of failure	Bearing temperature and vibration increases	
Degradation mechanism	Foreign material in lube oil	
Degradation indicators	Degradation of lube oil	
Monitoring Interval	Every month	
Action taken	Work order issued	

Q

RESULT

Table 2 Component Performance Monitoring Plan

Component	Risk importance	Duty Cycle	NDE	Duration
Low shaft pump discharge trip switch #1	High	Low		
Low shaft pump discharge trip switch #2	High	Low	Functional test	Quarterly
Low shaft pump discharge trip switch #3	High	Low		(3 months)
Low bearing oil trip switch #1	High	Low		
Low bearing oil trip switch #2	High	Low		
Low bearing oil trip switch #3	High	Low	Functional test	Quarterly (3 months)
Booster pump (BOP)	High	High	Pressure monitoring,	
Main oil pump (MOP)	High	High	vibrational analysis	Continuously
Turning gear oil pump (TGOP)	Low	Low		
Emergency bearing oil pump (EBOP)	Low	Low		Quarterly (3 months)
Motor Suction pump (MSP)	Low	Low		
Lift oil pump #1	Low	Low		
Lift oil pump #2	Low	Low	Pressure monitoring, Vibrational analysis	
Lift oil pump #3	Low	Low		
Lift oil pump #4	Low	Low		
Lift oil pump #5	Low	Low		
Lift oil pump #6	Low	Low		
Lift oil pump #7	Low	Low		
Lift oil pump #8	Low	Low		
Oil conditioner gear pump	Low	High		Refuelling Outage
MOP discharge check valve	Low	High	Pressure monitoring,	
Booster baffler valve	Low	High	Vibrational analysis	
Bypass baffler valve	Low	High		
Bearing relief valve	Low	High		
Filter #1	Low	High	Disassemble filter housing	Refuelling Outage
Filter #2	Low	High		
FIKE BINGS	Low	High	7	

Ģ

Table 3 Overhaul Maintenance Plan

Component	Examination	Corrective Action
Pump & motor items	 Disassemble Dimension check Pressure test Ultrasonic test 	 Parts replacement Functional test
Valves	 Disassemble Dimension check Pressure test Ultrasonic test 	- Parts replacement
I&C components (Trip switches)	- Disassemble	Parts replacementFunctional test
Filters	- Disassemble filter housing	- Filter elements replacement

RESULT

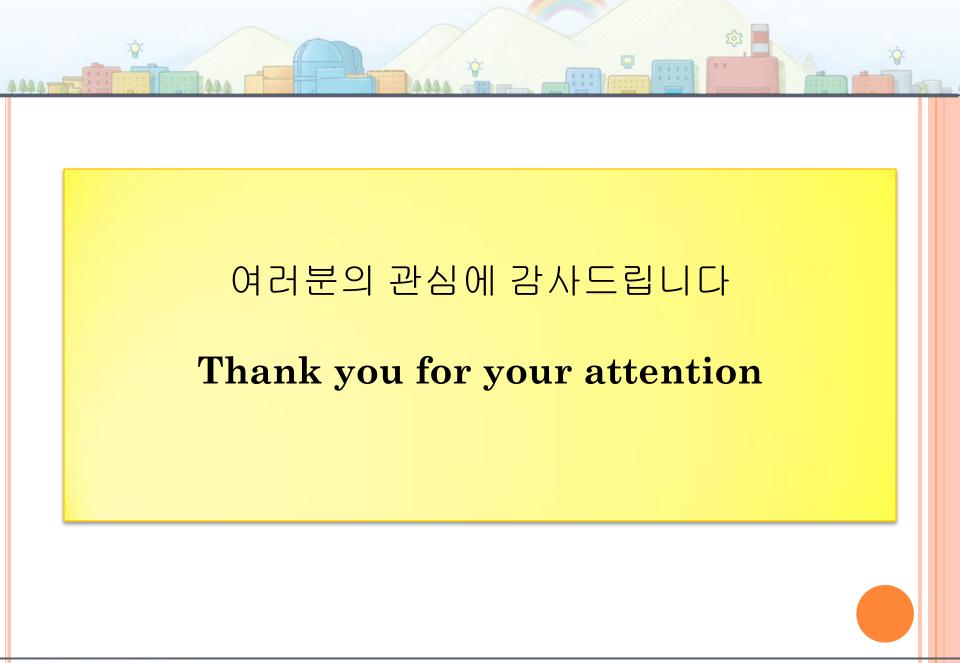
Discussion of Result

- □ For the HSS MOP and the BOP with 'High' duty cycle , continuous monitoring is proposed.
- □ For the standby pumps with LSS and 'Low' duty cycle, periodic tests (quarterly) is proposed
- Preventive maintenance at refuelling outage is proposed for the remaining components since their risk level is low.

- The components of the turbine lube oil system have been identified and categorized using Delphi.
- A performance monitoring plan has been established to monitor the TLB at system and component level.
- A future work is proposed to develop a preventive maintenance plan for the non-critical components, whose failures could pose a maintenance or operational burden.

KEFERENCES

[1] APR 1400 Turbine, Generator and Auxiliary Systems, KHNP Nuclear Power Education Institute.


[2] Equipment Reliability Process Description, INPO AP-913, March 2011

[3] Sang- Dae Lee, Safety Significance Determination Lecture Presentation, KINGS 2016.

[4] NUMARC 93-01, Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants, Rev.4, 2011.

tory, 1988.

