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1. Introduction 

  Korea Institute of Nuclear Safety (KINS) has been 
trying to establish an audit calculation methodology on 
reactivity-initiated accident (RIA) safety analysis based 
on a realistic approach [1].  Realistic approach is a well-
known methodology for the area of loss-of-coolant 
accident (LOCA) safety analysis, and it seems to be 
applicable to the RIA safety analysis also. Realistic 
approach is composed of the evaluation of best-estimate 
performance and uncertainty quantification. And the 
code performance has to be validated based on the 
experimental results. For the uncertainty quantification, 
important uncertainty parameters need to be chosen, 
and combined uncertainty has to be evaluated with an 
acceptable statistical treatment.  
 Author previous works have identified as many as 
uncertainty parameters that can affect the fuel 
performance during RIA [2]. And important uncertainty 
parameters to the rod performance such as fuel 
enthalpy, fission gas release, cladding hoop strain etc. 
were chosen through the rigorous sensitivity studies. 
And their validity has been assessed by utilizing the 
experimental results tested in CABRI and NSRR [3]. 
Analysis results revealed that several tested rods were 
not bounded within combined fuel performance 
uncertainty. These are shown briefly in section 2 in this 
paper. In the previous study, uncertainty of fuel power 
was assumed as +/- 5%(2s). But it is reported that the 
uncertainty of injected energy of CABRI is about 
+/-11% (2s) [4]. Thereby, in this paper fuel performance 
was assessed again with extended power uncertainty.  

2. Validation with experimental results 

  For the selection of important uncertainty parameters 
sensitivity study has been carried out by changing fuel 
burnup, injected energy and full-width half maximum 
(FWHM) of the given RIA power pulse. Considered 
fuel burnup was 0.5, 30 and 50 MWd/kgU. Evaluated 
FWHM was 10 and 20 ms. Radially averaged peak 
injected energy was 80, 100 and 140 cal/g. 
FRAPCON-3.5 and FRAPTRAN-1.5 fuel performance 
code were used. Analysis results revealed that the 
number of important uncertainty parameters to 
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Table 1. Selected important uncertainty parameters 
for covering each fuel performance uncertainty with 
sufficient levels of assurance [3].
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TABLE 1. Information on the tested rods in NSRR and CABRI reactor [15] 
 

Test ID Burnup 
(MWd/kgU) 

Oxide 
thickness 

(µm) 

Peak fuel 
enthalpy 

(cal/g) 

Clad max 
hoop strain 

(%) 

Transient 
FGR 
(%) 

Initial test 
temperature 

(K) 

Test 
reactor 

FK1 45 16 130 0.8 8.2 304.8 NSRR 
GK1 42 10 93 2.5 12.8 292.8 

HBO6 49 30 85 1.2 10.4 289.8 
MH3 39 5 67 1.6 4 292.8 
OI2 39 15 108 4.8 10.2 292.8 
TS5 26 6 98 0. 8 297.8 

CIP0-1 75 50~100 93 0.5 15 553.0 CABRI 
Na3 54 35~60 123 2.2 13.7 553.0 
Na4 62 60~80 87 0.4 8.3 553.7 
Na5 64 15~25 108 1.1 15.1 553.3 
Na6 35 35 133 2.6 21.3 552.7 
Na9 50 10 197 7.2 33 553.4 

 

Table 2. Information on the tested rods in NSRR and CABRI reactor [5] 
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represent the uncertainty of peak fuel enthalpy, peak 
fuel temperature and fission gas release within a 
sufficient level of assurance was eight, seven and seven, 
respectively. And twenty, eighteen and eighteen 
parameters were identified as the representative 
parameters for rod internal pressure, plastic hoop strain 
and peak average cladding temperature, respectively.  If 
these parameters were selected altogether, above 98 % 
of fuel performance uncertainty coverage can be 
assured. Table 1 shows the identified uncertainty 
parameters on the peak fuel enthalpy (PFE), fission gas 
release (FGRtrans) and plastic hoop strain (PHS) of 
cladding.   
 The validity of those parameters has been assessed by 
utilizing the twelve experimental results, which were 
tested in CABRI and NSRR. Table 2 shows the 
summarized information on the tested rods. Non-
parametric order statistics was used for the combined 
uncertainty analysis. Analysis results showed that FK1, 
CIP0-1, Na6 and Na9 rods were not bounded within the 
analyzed enthalpy uncertainty. CIP0-1 and Na9 test 
results were not bounded within the transient fission gas 
release uncertainty. And GK1, MH3, OI2, Na6 were not 
bounded within plastic hoop strain uncertainty. This 
implies that the currently considered uncertainty range 
is not enough to cover the fuel performance sufficiently. 

3. Validation with extended power uncertainty  

3.1 Analysis methodology 

 Selected uncertainty parameters, uncertainty ranges, 
probability density functions were exactly same as the 
previous work, except for the power uncertainty [3]. 
The power uncertainty is extended from +/-5% to +/- 
11%. Seven tested rods in NSRR and CABRI were 
analyzed again. These are FK1, GK1, MH3, OI2, 
CIP0-1, Na6, Na9. Non-parametric order statistics was 
used for uncertainty quantification, and 124 fuel 
performances were obtained on each tested rod. 
Detailed information on the analysis methodology can 
be founded in ref. [3]. 

3.2 Analysis results 
 Fig.1 shows the analysis results of PFE,  FGRtrans  and 
maximum plastic hoop stain. Results showed that 
CIP0-1, Na6 and Na9 rods were not bounded within the 
analyzed enthalpy uncertainty. CIP0-1 and Na9 test 
results were not bounded within the transient fission gas 
release uncertainty. And GK1, MH3, OI2, Na6 were not 
bounded within plastic hoop strain uncertainty. This 
implies that the extended power uncertainty alone is 
still insufficient to cover the fuel performance 
uncertainty successfully.   

4. Summary  

  Assessment of fuel performance with extended fuel 
power uncertainty on tested rods in NSRR and CABRI 
has been done. Analysis results showed that several 
tested rods were not bounded still within fuel 
performance uncertainty.  
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Fig. 1. Calculated and measured fuel performance of 
(a) peak fuel enthalpy (PFE), (b) transient fission gas 
release (FGRtrans) and (c) maximum plastic hoop 
strain (PHS). Error bars indicate the third highest and 
lowest values among 124 runs.


