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1. Introduction 
 

To monitor in-core power distributions, the 
reconstruction of axial power shape using in-core 
detector signals is essential. Core Operating Limit 
Supervisory System (COLSS) uses 5th order Fourier 
series expansion to reconstruct axial power shapes, 
which is known to have relatively large errors for 
saddle, top- and bottom-skewed shapes [1]. This paper 
applies Group Method of Data Handling (GMDH) 
algorithm [2-6] to improve the reconstruction accuracy. 
Reference three-dimensional power distributions are 
generated for Shinkori Unit 1 Cycle 3 by simulating Xe 
transients in BOC, MOC, and EOC, which include 
saddle, top- and bottom-skewed shapes. Using these 
power distributions, the axial power distributions were 
reconstructed by GMDH and the 5th order Fourier series 
method [7]. It was shown that GMDH algorithm 
reduced the average Root-Mean-Square-Error (RMSE) 
from 1.01% of Fourier series method, down to 0.17%. 

 
2. Methods and Results 

 
In this section, the 5th order Fourier series method 

and the GMDH algorithm will be presented with simple 
examples. Then, the accuracy of reconstructing power 
distribution of both methods will be evaluated.  

 
2.1 5th order Fourier series method 

 
The 5th order Fourier method uses five sine functions 

with Fourier weighting coefficients. The power 
distribution of core is represented as follows: 
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Fig. 1. Axially one-dimensional spatial detector system 
 
Fig. 1 is a schematic drawing to show relative 

positions of in-core detectors according to axial location 
of nodes of fuel assembly. 

The axial buckling, B, is defined as follows: 
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By substituting Eq. (1) into Eq. (2), detector signals 

are represented as follows: 
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If we let 
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then  Eq. (4) becomes 
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Eq. (6) can be rewritten in a matrix form as follows: 
 

=d Ha .                                   (7) 
 
In this calculation, matrix a is the unknown. So it can 
be determined as below: 
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The axial power shape can be reconstructed by products 
of the Fourier series matrix S and the Fourier series 
coefficient vector a. 
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Vector of axial power distribution
      in an assembly,

Expanded matrix
      by basic functions of Fourier series.

where
=

=

p

S
  

 
The matrix S is expanded by basic functions of Fourier 

series which is as below: 
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Fig. 2 shows each basic function of Fourier series, 

which has different period. 
 

 
Fig. 2. Basis functions of matrix S 

 
2.2 GMDH algorithm 
 

The GMDH algorithm is the process for constructing 
a high-order polynomial as follows: 
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which relates m input variables, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚 to a single 
output variable y. This high-order polynomial is also 
consisted of so called Ivakhnenko polynomial which is 
as follows: 
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Using the GMDH algorithm, the Ivakhnenko 
polynomials will be collected in each iteration, and 
eventually it is combined into a single equation 
representing the relationships between the input 
variables and the output variable. In the followings, the 
basic steps of the GMDH algorithm will be described. 

 
Step 1: Divide data sets 

To begin the GMDH algorithm, given data sets have to 
be divided into training and testing sets. The training set 
is used to train Ivakhnenko polynomials to find the 
polynomial which have optimal complexity. The testing 
set is used to evaluate the performance of the trained 
polynomials. In this paper, 75% of the total data is used 
for training and the remaining 25% is for testing. 

 
Step 2: Construction next generation sets 

The polynomials, that will produce next generation sets, 
are constructed as follows: 
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and 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗  indicate the columns of independent 
variables. This equation can be represented in a matrix 
form as follows: 
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where 𝑛𝑛𝑡𝑡  means the number of data for training, i.e., 
there is 𝑛𝑛𝑡𝑡  of training data, and the rest of data is for 
testing. The coefficients matrix is the unknowns in this 
matrix calculation, and it can be found by applying the 
least square minimization. So this matrix calculation 
can be solved by Pseudo inverse matrix, and the process 
is as follows: 

 

( )-1T Ta = X X X y .                      (15) 

 
by using this coefficient found from Pseudo inverse 
calculation, the variable sets of next generations are 
produced by following way:  
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In this matrix calculation, n indicates the total number 
of data. The coefficients of a are produced from training 
set. And it’s applied to whole data set including 
checking set to produce next generation variable set of z. 

 
Step 3: Check the compatibility of new sets 

The RMSE calculated by checking sets can be used for 
screening out data sets which are not effective at 
predicting. And this step, the testing sets are considered 
only, and the calculation form is as follows:  
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The variable columns which have larger value of the 

RMSE than the predetermined criteria, those columns 
will be removed in that generation. This process is 
called as a self-organizing, and it is similar to the 
natural selection process. The worse variable sets are 
not selected and the only good data can survive. In this 
step, if the minimum value of RMSE among the new 
generation’s columns decreases, the calculation process 
goes back to step 2, and repeats the same process. But if 
it increases, then it means that this new generation is 
fitting to the training set more accurately, but the 
prediction accuracy for the testing sets is less accurate, 
i.e., it’s getting worse at predicting variables of the 
checking sets. This is called as an overfitting, and if this 
phenomenon occurs, then this iteration is the end of 
GMDH algorithm, and the column sets which has the 
least RMSE will be the final Ivakhnenko polynomials . 
 

 
Fig. 3 RMSE as stopping criterion 

 
2.3 Results 
 

To test the validity of the GMDH based axial power 
reconstruction method, the data sets of Shinkori unit 1 
cycle 3 were used to construct the axial power shapes. 
The final form of polynomials of axial power 
distribution at node z is represented by P(z). P(1) and 
P(10) are the examples of power distribution at 1st node 
and 10th node in this research. 

 
 𝑃𝑃(1) = (−0.0033)�(−0.019) + (𝑑𝑑10.282 +

𝑑𝑑1𝑑𝑑20.020)1.047 + �𝑑𝑑31.793 +

𝑑𝑑4(−1.468)�2(−0.0258)�1.341 + ��𝑑𝑑20.485 + 𝑑𝑑220.028 +

𝑑𝑑3(−0.253)�1.182 + �𝑑𝑑31.793 +

𝑑𝑑4(−1.468)�(−0.188)� (−0.339)   

𝑃𝑃(10) = �(𝑑𝑑1(−0.430) + 𝑑𝑑120.0112 + 𝑑𝑑20.861)0.514 +

(𝑑𝑑10.144 + 𝑑𝑑1𝑑𝑑3(−0.00296) + 𝑑𝑑30.372)0.485�0.875 +

��𝑑𝑑31.109 + 𝑑𝑑32(−0.0121) + 𝑑𝑑4(−0.573)�0.923 +

�𝑑𝑑31.109 + 𝑑𝑑32(−0.0121) + 𝑑𝑑4(−0.573)�
2

(−0.187) +

(𝑑𝑑20.568 + 𝑑𝑑22(−0.0669) + 𝑑𝑑520.0474)20.257�0.124  

 
and there are more polynomials for each position of 24-
nodes. 
 
For comparing error distribution of power 
reconstructions for each case, for each assembly, the 
RMSE of each assembly is calculated as follows: 
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 Fig. 4 RMSE for Fourier series method and GMDH  

(a) 

(b) 

 
(c) 

Fig. 5 Power reconstructions according to (a)bottom-skewed 
shape, (b)saddle shape, and (c)top-skewed shape. 

 
As in Fig. 4, the RMSE of each case of GMDH 

algorithm has smaller error than the 5th order Fourier 
series method. Fig. 5 shows three cases from the data 
sets, and the GMDH shows good accuracy at fitting 
curve compared with the Fourier series method. 
Especially in Bottom-skewed, and Top-skewed shapes, 
Fourier series method shows relatively large error in a 
convex and concave region of power distribution 
whereas the GMDH algorithm still shows good 
accuracy. 

 
3. Conclusions 

 
This paper presents the accuracy improvement of 

axial power reconstruction using GMDH algorithm with 
the first order polynomial basis function compared to 
the COLSS Fourier series expansion algorithm.   In the 
future study, higher order basis functions, such as 
trigonometric, exponential, or high-order polynomials 
will be applied in GMDH algorithm to further reduce 
the error in top/bottom skewed power shapes. 
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