
Transactions of the Korean Nuclear Society Fall Meeting
Gyeongju, Korea, October 27-28, 2016

Coupling Computer Codes for The Analysis of Severe Accident

Using A Pseudo Shared Memory Based on MPI

Young Chul Cho, Chang Hwan Park*, Dong Min Kim
Dept. of Knowledge Eng., FNC Technology Co., Ltd. Heungdeok IT Valley Bldg. 32F, 13, Heungdeok 1ro,

Giheung-gu, Yongin-si, Gyoenggi-do, 446-908, Korea
*Corresponding author: ycc@fnctech.com

1. Introduction

FNC in collaboration with KAERI and KHNP is

trying to couple computer codes for the analysis of
severe accidents. Recently several computer codes
including RELAP & CONTEMPT, SPACE & CAP,
etc. are coupled to predict and analyze coupled
phenomena in nuclear power plants.

Compared to the coupling for the analysis of severe
accident, it is relatively easy to implement the
coupling of RELAP & CONTEMPT or SPACE &
CAP, as there are two computer codes involved. As
there are four codes in-vessel analysis code
(CSPACE), ex-vessel analysis code (SACAP),
corium behavior analysis code (COMPASS), and
fission product behavior analysis code, for the
analysis of severe accident, it is complex to
implement the coupling of codes with the similar
methodologies for RELAP & CONTEMPT or SPACE
& CAP. Because of that, an efficient coupling so
called Pseudo shared memory architecture was
introduced.

In this paper, coupling methodologies will be
compared and the methodology used for the analysis
of severe accident will be discussed in detail.

2. MPI and Dynamic Linking

2.1 Dynamic Linking

Dynamic linking is a mechanism by which a
computer program can, at run time, load a library (or
other binary) into memory, retrieve the addresses of
functions and variables contained in the library,
execute those functions or access those variables, and
unload the library from memory. Unlike static linking
and loadtime linking, this mechanism allows a
computer program to start up in the absence of these
libraries, to discover available libraries, and to
potentially gain additional functionality.[1][2]

In KNS, most developers could be acquainted with
the dynamic linking methodology for the mixed
programming with Fortran and C under Windows
operating systems. At that time, they used Fortran for
the computation, and C for the graphics and graphical

user interface. Developers extended the methodology
to the coupling of computer codes.

Contrary to the MPI, computer codes coupled with
dynamic linking can be told as tight coupled as the
developer has to know the details while coupling.

2.2 MPI

MPI, started in 1991, is the result of an effort to

make a language-independent communications
protocol used to program on parallel computers. MPI
is available on major operating systems including
UNIX, Linux and MS Windows.[3]

Even though MPI was developed to make parallel
programs, it can also be used for computer codes
coupling. SPACE/CAP coupling is one of them.
Computer codes coupled with MPI can be told as
loosely coupled, as the developers don’t have to know
the internal of each application while coupling. What
they have to know are when and what to send/receive
data to/from.

3. Computer Codes Coupling Methodologies

The coupling methodologies fall into the following

three categories.

• Dynamic linking for RELAP & CONTEMPT

coupling
• Point to point communication based on MPI for

SPACE & CAP coupling
• Pseudo shared memory based on MPI for the

analysis of severe accident

3.1 Dynamic Linking

A simplified flow diagram for the coupling with

dynamic library linking methodology is shown in
Figure 1.

As can be seen from Figure 1, the slave to be called
should be made as a DLL and its input, output and
processing part should be called from the master.
That means one should know the internals of both
computer codes to couple them.

Transactions of the Korean Nuclear Society Fall Meeting
Gyeongju, Korea, October 27-28, 2016

End of
Execution?

Start

No

Read Input for
Master

Initialize Master

Read Input for Slave

Initialize Slave

EndYes

Solve Slave

Solve Master

Figure 1: Simplified Flow Diagram with Dynamic

Linking

3.2 Point to Point Communication Based on MPI

A simplified flow diagram for the coupling with

point to point communication based on MPI is shown
in Figure 2.

End of
Execution?

Start Master

No

Read Input for
Master

Initialize Master

Read Input for Slave

Initialize Slave

End of AllYes

Send Continuation
Signal

Spawn Slave

Start Slave

Send Initial Values

Receive Continuation
Signal

Solve SlaveSolve Master

Send & Receive Data

Figure 2: Simplified Flow Diagram with Point to
Point Comm.

As two codes are involved in coupling, point to

point communication which means direct send and
receive communication is adequate for coupling as
there is few possibilities of deadlock when sharing
data between two processes.

3.3 Pseudo Shared Memory Based on MPI

A simplified flow diagram for the coupling with

pseudo shared memory based on MPI is shown in
Figure 3.

End of
Execution?

Start Master

No

Read Input for
Master

Initialize Master

Read Input for Slave

Initialize Slave

End of All

Yes

Spawn Slaves

Start Each Slave

Put values with dt

Get values with
minimum dt

Solve SlaveCalc. Minimum dt

Figure 3: Simplified Flow Diagram with Pseudo Shared

Memory

As more than three computer codes are coupled,

pseudo shared memory and master process are
introduced to remove the complexity. Implementation
of coupling with more than three computer codes, the
process will easily be in deadlock with direct send and
receive communications as there can be mismatching
communications.

Master

SACAPCSPACE

COMPASS

Fission
ProductPseudo

Shared
Memory

Figure 4: Pseudo Shared Memory Architecture

As can be seen from Figure 4, the memory area of

master process can be used as pseudo shared memory
to store and process for the rest of the procedures. The
dt from each process can be sent to the master
process’s memory and each slave process (CSPACE,
SACAP, and Fission Product) can get the resulting
minimum dt calculated by the master process. Each
slave process can directly get and put values required
for each process as well as if the memory allocated for
the master process is the pseudo shared memory for
all processes.

What one should be aware is that each process
should access its dedicated data on a specific time
while coupling with this methodology.

3.4 Pros and Cons of Each Methodology

The pros and cons of each methodology are listed
in Table 1. Cons are in slanted letters.

Transactions of the Korean Nuclear Society Fall Meeting
Gyeongju, Korea, October 27-28, 2016

Table 1: Comparison of Coupling Methodologies

 Characteristic Dynamic
Linking

Point to
Point
Comm.

Pseudo
Shared
Memory

Need to know the
details of both codes

Yes No No

Portability across
multiple operating
systems

No Yes Yes

Extensible to parallel
computation

No Yes Yes

Must execute on the
same compute

Yes No No

Maintain separate
versions for
standalone and
coupled execution

Yes No No

Debugging coupled
codes

Simple Complex Complex

Deadlock Never Yes No
Easy to transfer data
from one program to
another

Yes No Yes

Compile time
program error
checking

No Yes Yes

4. Conclusions

The barrier between in-vessel and ex-vessel has

been removed for the analysis of severe accidents
with the implementation of coupling computer codes
with pseudo shared memory architecture based on
MPI. The remaining are proper choice and checking
of variables and values for the selected severe
accident scenarios, e.g., TMI accident.

Even though it is possible to couple more than two
computer codes with pseudo shared memory
architecture, the methodology should be revised to
couple parallel codes especially when they are
programmed using MPI.

REFERENCES

[1] Autoconf, Automake, and Libtool: Dynamic Loading
(http://sourceware.org/autobook/autobook/autobook_
158.html)

[2] Linux4U: ELF Dynamic Loading
(http://linux4u.jinr.ru/usoft/WWW/www_debian.org/
Documentation/elf/node7.html)

[3] Gropp, William; Lusk, Ewing; Skjellum, Anthony
(1996). "A High-Performance, Portable
Implementation of the MPI Message Passing
Interface". Parallel Computing. CiteSeerX:
10.1.1.102.9485.

