

Anticipated Transient without Scram Assessment of SM-SFR using SAS4A/SASSYS-1

Taewoo Tak

HICO, Gyeongju KNS Autumn Oct. 27, 2016

COmputational **R**eactor Physics & **E**xperiment lab

Contents

Introduction

- Fast Reactor Development in UNIST
- Development of Small Modular Sodium-cooled Fast Reactor (SM-SFR)
 - Design Requirement of SM-SFR
 - Conceptual Reactor Core Design of SM-SFR
- Anticipated Transient Without Scram (ATWS) Analysis for SM-SFR
 - Unprotected Scenarios of Loss of Flow (ULOF), Loss of Heat Sink (ULOHS), Transient Over Power (UTOP)
 - Quasi-static Reactivity Balance Analysis

Conclusion

CORE COmputational Reactor physics & Experiment lab.

Introduction

CORE COmputational Reactor physics & Experiment lab.

2016-10-27

Introduction

- Fast Reactor Development in UNIST
 - Ultra-long Cycle Operation: 60-year EFPD
 - UCFR-1000 & UCFR-100
 - Natural uranium for upper blanket
 - Breeds in axial direction
 - PWR spent fuel loading feasible
 - Power flattening study with thorium blanket

GORE COmputational Reactor physics & Experiment lab.

Development of SM-SFR

CORE COmputational Reactor physics & Experiment lab.

SM-SFR

- A combination concept of SMR and SFR
- Ultra-long cycle operation in neutronics point of view
- Feasibility for PWR spent fuel loading as blanket material

Parameter	Value	
Electric power [MW]	100	
Thermal efficiency [%]	<42	
Cycle length [year]	30	
Core barrel diameter [m]	<3	
Inlet temperature [°C]	355~395	
Outlet temperature [°C]	510~550	
Eucl form	U-10Zr	
ruei ioi iii	(SF-7Zr)	
Cladding material	HT-9	
Fission Gas Emission	Venting	
Fuel enrichment [%]	<20	
Average burnup [at%]	10<	
Average volumetric	2000	
power density [kW/l]	30~80	
Reactivity Swing [pcm]	<1000	

Reactor Components outside Core

- Around Core
 - Reactor Vessel
 - Core Support Plate
 - UIS (Upper Internal Structure)
 - Pump
- Fluid System
 - DHX (Decay Heat Exchanger)
 - AHX (Air Heat Exchanger)
 - IHX (Intermediate Heat Exchanger)
 - FDHX (Forced-Draft Sodium
 - -to-Air Heat Exchanger)
- Secondary System
 - SG (Steam Generator)
 - EMP (Electro Magnetic Pump)
 - SDT (Sodium Dump Tank)

UORE COmputational Reactor physics & Experiment lab.

Design of SM-SFR Core

- Operation: 100MWe, 30-year operation time
- Geometry: core barrel <3 m, vented fuel concept
- Fuel: binary metallic, enrichment <20%
- Depletion: Avg. burnup >10%, reactivity swing < 1000 pcm

ORE COmputational Reactor physics & Experiment lab.

UORE COmputational Reactor physics & Experiment lab.

- Kinetics Parameters and Reactivity Feedback Coefficients
 - Negative sodium and expansion reactivity

		BOL	MOL	EOL
Effective Multiplication Factor, k _{eff}		1.00373	1.00761	0.99735
Effective Delayed Neutron Fraction, β_{eff}		0.00719	0.00535	0.00428
Prompt Lifetime	μsec	0.279	0.267	0.245
Sodium Void Worth (85% void)	\$	-2.160	-0.819	-0.559
Fuel Density Coefficient	¢/°C	-0.173	-0.230	-0.298
Structure Density Coefficient	¢/°C	0.011	0.030	0.046
Sodium Density Coefficient	¢/°C	-0.043	0.011	0.070
Doppler Coefficient	¢/ °C	-0.300	-0.272	-0.220
Radial Expansion Coefficient	¢/ °C	-0.158	-0.190	-0.225
Axial Expansion Coefficient	¢/ °C	-1.186	-0.998	-0.920
Primary Control Rod Worth	pcm/cm	-78.286	-71.052	-56.458
Secondary Control Rod Worth	pcm/cm	-3.368	-12.500	-24.741

• PWR Spent Fuel Loading in Blanket

- More ²³⁵U, Less ²³⁸U
- Greater initial k_{eff}, less breeding, shorter cycle length

Safety Analysis of SM-SFR

CORE COmputational Reactor physics & Experiment lab.

Anticipated Transient Without Scram (ATWS)

- ULOF: Unprotected Loss of Flow
- ULOHS: Unprotected Loss of Heat Sink
- UTOP: Unprotected Transient Over Power

	Cause	Initial Transient	Response
ULOF	-Power loss -Piping fault	-Flow reduction -Inlet T fixed	-Flow coast down -Power/flow increase -Negative reactivity
ULOHS	-IHX failure	-Inlet T increase	-Negative reactivity
	-Heat sink loss	-Primary flow fixed	-Power/flow decrease
UTOP	-Single control	-Flow fixed	-Positive reactivity
	rod withdrawal	-Inlet T fixed	-Power/flow increase

SAS4A/SASSYS-1

- Developed in Argonne National Laboratory
- Thermal-hydraulic & neutronic (point kinetics) analysis of power and flow transient for liquid metal cooled fast reactor (LMR)
- Analyze severe accidents transient or core disruption with coolant boiling and fuel melting
- Assess design basis accident (DBA) analysis and beyond design basis accident (BDBA) analysis

Mini-SAS

- Limited version
- 5 channels
- Without severe accident capability

Reactor Parameters

- Primary flow rate (average): 1224 kg/s, (0.093 kg/s per pin)
- Average linear power density: 17.3 kW/m

Channel Assignment

Channel 1: inner core
Channel 2: middle core
Channel 3: outer core
Channel 4: reflector
Channel 5: peak

- Steady State Condition at Full Power
 - Confirmed code get steady with null transient for the reactor design
 - Power, flow, reactivity, temperatures from channel data file

ULLIST

Steady State Condition at Full Power

- Confirmed code get steady with null transient for the reactor design
- Channel temperature profile from output

Peak channel condition along axial level

Peak channel temperature along axial level

CORE COmputational Reactor physics & Experiment lab.

Net

P/F

2000

1000

CRDL

Coolant

3000

Time (s)

Safety Analysis of SM-SFR

• ATWS analysis

• ULOF

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15

-0.20

-0.25

0

Reactivity (\$)

- P/F greater than unity until 142 s
- Temperatures increase temporary

Radial

Axial

4000

Doppler

5000

6000

- Strong negative reactivity
- Core temperature decrease

1.2

Time (s)

Safety Analysis of SM-SFR

• ATWS analysis

- ULOHS
 - Inlet temperature increase
 - Net negative reactivity
 - Power decrease

CORE COmputational Reactor physics & Experiment lab.

ATWS analysis

Safety Analysis of SM-SFR

• UTOP

0.4

- 30 cents through 15 seconds
- Drastic power increase temporary
- Strong negative reactivity
- Power decrease back

CORE COmputational Reactor physics & Experiment lab.

• Quasi-static Reactivity Balance

 α_D : Doppler coefficient

 α_{Ax} : Fuel axial expansion reactivity coefficient

 α_{Na} : Sodium density reactivity coefficient

$$egin{aligned} A &= ig(lpha_D + lpha_{Ax}ig) \Delta T_f\,,\ B &= ig(lpha_D + lpha_{Ax} + lpha_{Na} + 2lpha_{CR} + 2lpha_{Ra}ig) rac{\Delta T_c}{2},\ C &= lpha_D + lpha_{Ax} + lpha_{Na} + lpha_{Ra}\,, \end{aligned}$$

 α_{CR} : Control rod driveline thermal expansion reactivity coefficient

 α_{Ra} : Core radial expansion reactivity coefficient

 ΔT_f : incremental temperature increase in the fuel

 ΔT_{C} : full power, steady-state coolant temperature increase

	BOL	MOL	EOL			
A: Power coefficient, ¢	-30.99	-35.63	-39.97			
B: Power/flow coefficient, ¢	-45.01	-48.71	-52.37			
C: Inlet temperature coefficient, ¢/ °C	-0.41	-0.42	-0.42			
$\Delta \rho_{TOP}$: Transient over power initiator, ¢	8.61	23.52	10.60			
Required conditions to attain inherent safety						
A/B < 1	0.69	0.73	0.76			
$1 < C\Delta T_c/B < 2$	1.40	1.33	1.25			
$\Delta \rho_{\text{TOP}} / B < 1$	0.19	0.48	0.20			

CORE COmputational Reactor physics & Experiment lab.

171;2.

Conclusion

Reactor Core Development in UNIST

- Ultra-long Cycle Fast Reactor
- Small Modular Sodium-cooled Fast Reactor

Safety Analysis for SM-SFR

- Kinetics parameters and reactivity feedback coefficients
- Negative sodium and expansion reactivity
- Transient evaluation for ATWS scenarios; ULOF, ULOHS, UTOP
- Quasi-static reactivity balance analysis

Inherent Safety Confirmed for SM-SFR Core

Thank You for Your Attention!