
Transactions of the Korean Nuclear Society Autumn Meeting

Gyeongju, Korea, October 27-28, 2016

NuFTA 2.0: New Templates and an Automatic Generator of Fault Tree for NuSCR

Junik Son, Yonghyun Kim, Kukbin Jeong, Dong-Ah Lee *, Junbeom Yoo

Division of Computer Science and Engineering, Konkuk University

1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea

*Corresponding author: ldalove@konkuk.ac.kr

1. Introduction

A nuclear power plant control system is one of safety

critical systems whose accidents may result in critical

damage to human lives or loss of properties. Fault Tree

Analysis (FTA) [1] is one of hazard analyses. It analyzes

trees which contain causes of a fault in a system. FTA is

widely used for high-hazard industries: aerospace,

nuclear power, chemical industry, etc. Software Fault

Tree Analysis (SFTA) [1] is also a hazard analysis

method that applies FTA in software.

This paper introduces new templates for generating fault

tree from NuSCR [2] and an automatic generator of fault

trees using the templates [3]. NuSCR is a formal

specification language used for specifying software

requirements of KNICS (Korea Nuclear Instrumentation

and Control Systems) RPS (Reactor Protection System)

in Korea. A previous version of NuFTA [4] was too

difficult to analyze its results because of the size of fault

trees. To complement disadvantages of the previous

version, the NuFTA 2.0 with the new templates generates

the smaller size of fault trees which is concise enough to

analyze the trees.

This paper is organized as follows. In Section 2, to help

readers better understand NuFTA, we explain NuSCR

and FTA precisely. Section 3 introduces new NuFTA

templates and NuFTA 2.0. Section 4 shows a case study

that about fault tree generated by NuFTA 2.0 using real

NuSCR. Finally, Section 5 concludes the paper.

2. Background

2.1 NuSCR

NuSCR [2] is a formal software requirements

specification method of KNICS RPS in Korea for the

digital nuclear power plants control system. NuSCR has

three variable models: function variables, history

variables and timed history variables. Function variables

specify the mathematical functional behavior of a system.

History variables specify the state-based behavior of a

system. And timed history variables specify the time-

related behavior of a system. Each variable is a defined

Structured Decision Table (SDT), Finite State Machine

(FSM), Timed Transition System (TTS). Fig. 1 depicts a

simplified example of Function Overview Diagram

(FOD) in NuSCR. FOD describes data flow between the

variables from inputs to outputs.

Fig. 1 A simplified example of FOD in NuSCR

2.2 Software Fault Tree Analysis

Software Fault Tree Analysis (SFTA) [1] is a hazard

analysis method for software of safety critical systems.

SFTA uses a defined-fault and analyzes fault trees

contain causes of the fault. Fig.2 depicts an example of

software fault tree. As Fig.2, terminal causes of the fault

at the top are called leaf nodes. In SFTA, in order to

automatically generate fault trees, templates are used.

Fig. 2 An example of software fault tree

3. Automatic Fault Tree Generator

3.1 Templates of Fault Tree

3.1.1 The template of SDTs

SDT is Condition/Action tables, which represents the

actions (assignment statements) performed if their

guiding conditions (condition statements) are satisfied

[2]. Fig. 3 depicts an example of SDT. For example, if

f_X is a value between k_X_Min and k_X_Max, the

output value of f_X_Valid is 0 in Fig. 3.

Transactions of the Korean Nuclear Society Autumn Meeting

Gyeongju, Korea, October 27-28, 2016

Fig. 3 An example of SDT

Fig.4 depicts the previous version of the fault tree

template for SDT [3]. It draws a tree using only condition

statements. Action statements, however, is able to be

causes when an output of other variable node is appeared

in an output of a current SDT. Therefore, we add an

action statement in the new version of the template. Fig.

5 depicts the new version of the template for SDT. The

action statement is only described when an output of the

action is related to a value of an input and condition

statements are not related to the value of the input.

Condition statements are modified when condition

statements are related the value of the input.

Fig. 4 The previous version of the template for SDT

Fig. 5 The new version of template for SDT

3.1.2 The template of FSMs

Fig. 6 An example of FSM

As Fig.6, History variable node is defined as FSMs.

FSM consists of finite number of states, transitions

between states, and labels on each transition. Labels are

the “Conditions/Actions” statements which are same as

that of SDTs [2]. Fig. 7 depicts the previous version of

the fault tree template for FSM [3].

Fig. 7 The previous version of the template for FSM

The previous version generates duplicate conditions in a

tree. It makes the size of fault tree enormous. So we

modified the template to reduce duplicate conditions.

Because action statement is able to be causes, we add

action statement in the new version of the template. In

the case of “Enter the states via state transition”,

condition statements are modified when an assignment

of state is related to value of input. In the case of “Remain

at the state because of disabled outgoing transition”, the

output value of the action statement is at value which was

a previous cycle output value of current FSM. This two

cases are added in a new version of the template. Fig. 8

depicts a new version of the template for FSM

3.1.3 The template of TTSs.

The timed history variable node is defined as TTSs. TTS

is one of FSM extended with the timing constrains [a, b]

in transition conditions. [a, b] means the time duration

between time a and b [2]. A template of TTS is same

FSM except part of timing constrains [3]. So, the

template is changed as same as FSM,

Transactions of the Korean Nuclear Society Autumn Meeting

Gyeongju, Korea, October 27-28, 2016

3.2 NuFTA 2.0

We developed the NuFTA 2.0 in Eclipse Rich Client

Platform based on Java. The NuFTA 2.0 reads XML files

written in NuSCR and automatically draws the fault tree

according to an expert-defined fault. The Fault tree

analysis process in NuFTA 2.0 is as follows:

① The NuFTA 2.0 reads the information from the XML

file and stores the object for each node.

② The NuFTA 2.0 identifies one output node which was

defined as a fault by an expert.

③ The NuFTA 2.0 draws Fault Tree according to the

template. The NuFTA 2.0 checks the generated last node

and determines whether to extend the fault tree. The

NFTA 2.0 defines values of input variable nodes as basic

events and the value of the previous cycle as

undeveloped events.

④ Until all leaf nodes are basic events or undeveloped

events, continue on step ③.

⑤ As it is Shown in the Fig. 10, The NuFTA 2.0 creates

a logical formula which based on the generated Fault

Tree.

⑥ Logical formula follows the following structure.

4. Case Study

We demonstrate usability and effectiveness by applying

The NuFTA 2.O to RPS BP specification written in

NuSCR. Fig. 9 is a part of FOD for the Pressurizer low

pressure trip logic.

Fig. 9 A part of FOD

 for the Pressurizer low pressure trip logic

Fig. 8 The new version of template for FSM

Transactions of the Korean Nuclear Society Autumn Meeting

Gyeongju, Korea, October 27-28, 2016

This FOD's output value, f_LO_PZR_PRESS_OB_Err,

is a decision block of bypass operation. Fig.10 depicts a

fault tree and a logical formula that is created when the

output value set true. In the Fig. 10, left part is a list of

input / output nodes. In the Fig. 10's right upper part, the

fault tree was created to fit the template of each linked

variable nodes. In the Fig. 10's right lower part, the

NuFTA 2.0 displays a logical formula.

When we check result of the logical formula, we

extracted one of the input combination that causes fault

as shown below.

And for measuring performance, we run NuFTA 1.0 and

2.0 at the same environments and conditions. Table 1

shows the comparison of the fault tree drawing time and

the length of the formula between NuFTA 1.0 and 2.0.

Table 1 The comparison of the fault tree drawing time and the

length of the formula between NuFTA 1.0 and 2.0

 Drawing time

(ms)

Length of

formula (Byte)

NuFTA 1.0 1759915 916140

NuFTA 2.0 738 1012

5. Conclusion and Future Work

This paper introduces the NuFTA 2.0 which

automatically generates fault tree and logical formula

from NuSCR to assistance FTA. The result of case study

suggests improvement of drawing time and length of

formula. One of our next goals is going to study how to

analyze time from 0 to ‘a’ which is minimal value of time

constrains [a, b] in TTS. Another is finding minimal cut-

set, the smallest list of causes that is essential to cause

the fault, in order to analyze formula.

ACKNOWLEDGEMENT

This paper was supported by the Ministry of Science,

ICT & Future Planning

REFERENCES

[1] N. G. Leveson and P. R. Harvey, "Software fault tree

analysis," Journal of Systems and Software, vol. 3, pp.

173-181, 1983.

[2] Junbeom Yoo, Taihyo Kim, Sungdeok Cha, Jangsu Lee

and Han Seong Son, "A Formal Software Requirments

Specification Method for Digital Nuclear Plants

Protection Systems," Journal of Systems and Software,

vol. 74, no. 1, pp. 73-83, 2005.

[3] Taeho Kim, "Property-based Theorm Proving and

Template-based Fault Tree Analysis of NuSCR

Requirements Specification," in Ph.D Diessertation,

KAIST, 2006.

[4] Sanghyun Yun, Dong-Ah Lee and Junbeom Yoo,

"NuFTA: A Case Tool for Automatic Software Fault

Tree Analysis," in Transactions of the Korean Nuclear

Society Spring Meeting, Pyeongchang, Korea, May 27-

28, 2010.

Fig. 10 A result of generating fault tree and formula in NuFTA 2.0

