Transient Analysis of STELLA-2 using MARS-LMR

2016.10.27

이제환 (Jewhan LEE)

SFR NSSS Design Div.

Contents

- □ Introduction
- □ Design Basis Event
 - Loss Of Flow (LOF)
 - Loss Of Heat Sink (LOHS)
- □ MARS-LMR Analysis
 - Steady-state
 - Transient
- □ Comparison with PGSFR
 - Temperature Trend
 - Sodium/Air Flow Trend
- □ Conclusions

Introduction

□ STELLA-2

- Large-scale integral effect test facility
- Main purpose
 - To support the specific design approval for licensing
 - Safety analysis code V&V (MARS-LMR)
- Reference reactor
 - Prototype Gen IV SFR (PGSFR)
- Design Features
 - All PGSFR systems are considered
 - ✓ Pool-type PHTS with 2 PSLS
 - \checkmark 2 IHTS 4 IHXs and 2 UHXs
 - \checkmark 4 DHRS 4 DHXs, 2 AHXs, and 2 FHXs
 - ✓ Purification System
 - ✓ RVCS, Reactor Head Cooling System and etc.

STELLA-2 Schematic

KAERI

STELLA-2 3D Model

KAERI

Design Basis Event

□ Loss Of Flow (LOF)

- Occurs when all power to the pump is lost
- Major causes include;
 - Single/Double failure of pump, Pump discharge pipe break, Pump rotor lock, Pump shaft break and etc.
 - Loss Of Off-site Power (LOOP)
- □ Loss Of Heat Sink (LOHS)
 - Occurs when the SG is isolated and/or the IHTS is isolated
 - Major causes include;
 - Feedwater pipe break, IHTS pipe break, Sodium leak in SG, and etc.
 - Loss Of Off-site Power (LOOP)

For conservative safety analysis, LOF+LOOP and LOHS+LOOP is assumed
In this study, LOF+LOOP is the target DBE

KAERI

□ Difference between STELLA-2 and PGSFR

– PHTS

- Core heater assemblies
- Pump Simulation Loop System EMP, EMF, valves and piping
- Additional sodium volume under IHX and DHX
- IHTS
 - Ultimate Heat Exchanger (UHX) sodium to air heat exchanger
 - IHTS EMP modeling
- DHRS
 - 4 loops system
 - Stand-by and operation condition (air temperature)
 - Realistic K factor

□ Steady-state Results										
Variables	Tem	p(° C)	MARS Component	Description						
variables	Target	ST2	MARS Component	Description						
Inlet Plenum	390	391.92	153							
Core Out	545	546.95	170							
HotPool	545	545.38	183	IHX shell inlet						
	390	451.79 100		DHX shell inlet						
	390	389.83	105	PSLS intake						
	545	545.29	202	IHX shell inlet						
IHX	390	389.7	206	IHX shell outlet						
	390	449.94	502	DHX shell inlet						
DHX (Passive)	353.04	405.93	506	DHX shell outlet						
DUV (Activo)	390	449.86	702	DHX shell inlet						
DHX (Active)	353.04	353.04 407.24 706		DHX shell outlet						
	379.6	436.77	564	AHX tube inlet						
АПХ	352.2	403.29	568	AHX tube outlet						
EUV	379.6	437.3	778	FHX tube inlet						
FIIA	352.2	405.07	782	FHX tube outlet						
	528	525.97	282	UHX tube inlet						
υπλ	322	319.14	286	UHX tube outlet						
	376.47	435.72	590	AHX shell outlet						
Air	342.91	392.55	792	FHX shell outlet						
	162.04	163.99	408	UHX shell outlet						

Mariahlara	Flow(kg/s)						D.	Description	
Variables	Target		ST2		MARS Component		Desc	Description	
	17.7978		17.795		914		Inta	Intake 1	
	8.8989		8.8975		925		Discl	Discharge 1	
PSLS	8.8989		8.8975		926		Discl	Discharge 2	
	8.8989		8.8975		945		Disch	Discharge 3	
	8.8989		8.8975		946		Disch	Discharge 4	
IHX	8.8989		8.8999		203		S	Shell	
5111/	0.11234347		0.1299		503		Shell (Passive)		
DHX	0.11234347		0.1238		703		Shell	Shell (Active)	
АНХ	0.15116279		0.16826		565		Т	Tube	
FHX	0.15116279		0.16286		777		Т	Tube	
UHX	13.4		13.389		281		Т	Tube	
	Power (kW)		ΔT (° C)		Avg. Te	Avg. Temp (°C)			
Variables	Target		ST2	Target		ST2	Target	ST2	
Core	7016.1		7016.1	15	55.0	155.0	467.5	469.44	
IHX	1752.70		1759.57	155.00		155.59	467.5	467.50	
DHX (Passive)	5.35		7.30	36.96		44.01	371.52	427.94	
DHX (Active)	5.35		6.74	36.96		42.62	371.52	428.55	
AHX	5.35		7.20	27	7.40	33.48	365.9	420.03	
FHX	5.35		6.71	27.40		32.23	365.9	421.19	
UHX	3527.37		3539.95	20	6.00	206.83	425	422.56	
UHX(Air)	3686.70		3509.95	14	2.04	143.99	91.02	91.995	

한국원자력연구원

KAERI

- 9 -

□ Steady-state Results

- Heat balance of the system

PGSFR

- 10 -

□ Transient Analysis

- STELLA-2 time scale :
 - $\frac{1}{\sqrt{5}}$ ~ 1/2.24
- Accident scenario
 - PHTS pumps stop and coast-down : 4.47 s
 - IHTS pumps stop : 4.47 s
 - UHX air blow stops : 4.47 s
 - Core heater starts to decay : 6.7 s
 - Damper (AHX & FHX) opens : 8.94 s
- -Total analysis time ~ 22,000 s
 - corresponds to 50,000 s in PGSFR

□ Temperature Trend

- STELLA-2 results are lower than PGSFR in PHTS behavior
- For DHRS, the realistic friction (K factor) setup influenced the temp of DHX shell

PHTS Temp Trend

Time (s) Λ 1000 2000 3000 4000 5000 550 550 500 500 IHX Temp (C) 450 (C) dual XHI 450 400 PGSFR IHX Tube In PGSFR IHX Tube Out 350 350 ST2 IHX Tube In ST2 IHX Tube Out 300 300 2000 4000 6000 8000 0 10000 Time (s)

IHTS Temp Trend

DHX(Passive) Shell Temp **AHX Tube Temp** AHX Shell (Air) Temp Time (s) Time (s) Time (s) ST2 – – PGSFR – – – PGSFR ST2 480 -- – – PGSFR PGSFR ST2 PGSFR ST2 PGSFR DHX Shell Temp In/Out (C) 460 -440 (D) tho 420 ll ST2 AHX Tube Temp (C) ST2 AHX air Temp (C) 400 🖸 300 (C) 300 L 250 L) duə 350 (420 -380 I dual 360 Shell Temp I 400 -Tube 200 . 380 -150 XH 360 -AHX 340 XHO 340 -Time (s) Time (s) Time (s) **DHX(Active) Shell Temp** FHX Tube Temp FHX Shell (Air) Temp Time (s) Time (s) Time (s) - - PGSFR --PGSFR ST2 ST2 ST2 - – – PGSFR PGSFR ST2 ST2 - PGSFR ST2 A-DHX Shell Temp In/Out (C) - PGSFR ⁴⁶⁰ Q 400 -FHX Tube Temp (C) 440 th 420 U Temp (C) 400 Q 300 (C) 250 Lemb Temp 350 T 400 -air FHX Tube 200 · 🖥 FHX 150 ¥ 340 XHQ-Y 320 -

KAERI

Time (s)

한국원자력연구원

- 13

Transactions of the KNS Autumn Meeting, Gyeongju, Oct. 27-28, 2016

Time (s)

Time (s)

\Box Flow Trend

- PHTS flow is in good agreement with PGSFR results
- IHTS flow shows slight difference, but the influence to PHTS pool behavior is negligible

한국원자력연구원

KAER

- 14 -

□ Flow Trend

- Due to realistic friction (K factor) setup in DHX Shell side, relatively large discrepancy is observed in both PDHRS and ADHRS
- However, the final heat removal by air flow is approximately same

PDHRS (AHX) Flow Trend

ADHRS (FHX) Flow Trend

10000

5000

0.3

0.0

Conclusions

- □ A Part of design evaluation of STELLA-2
 - MARS-LMR analysis of steady-state and transient
- □ Representative DBE for the transient analysis
 - LOF with LOOP
- □ Comparison between STELLA-2 and PGSFR results
 - In good agreement within reasonable range
 - Some discrepancy observed due to different system, but minor effect
- □ For further study, various sensitivity test will be needed

References

- □ J. Eoh et al., "Computer Codes V&V Tests with a Large-Scale Sodium Thermal-Hydraulic Test Facility (STELLA)," ANS 2016 Annual Meeting, New Orleans, June 12-16, 2016.
- □ J. Eoh, "Engineering Design of Sodium Thermal-hydraulic Integral Effect Test Facility (STELLA-2)", KAERI SFR Design Report, SFR-720-TF-462-002Rev.00, 2015.
- □ J. Eoh, "Test Requirements for STELLA-2", KAERI SFR Design Report, SFR-720-TF-454-001Rev.00, 2015.
- □ Jung YOON, "Thermal-hydraulic Analysis Report of the STELLA-2 Model PHTS," KAERI SFR Design Report, SFR-720-TF-302-023 Rev.00, 2016.

