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1. Introduction 

 

As the operation period of Nuclear Power Plants (NPPs) 

is getting longer, it is effective that predicting of ageing 

effect to NPPs by reflecting plant-specific condition data 

for risk management and maintenance optimization. 

This paper will describe the prognostics method for 

evaluating and forecasting the ageing effect and 

demonstrate the procedure of prognostics for the Steam 

Generator Tube Rupture (SGTR) accident. Authors will 

propose the data-driven method so called MCMC 

(Markov Chain Monte Carlo) which is preferred to the 

physical-model method in terms of flexibility and 

availability. 

 

2. Methods 

 

2.1 Prognostics 

 

Prognostics is a key technology of PHM (Prognostics 

and Health Management) that monitors, diagnoses and 

prognoses integrity of system in a real time manner. [1, 2] 

Thus, prognostics enables to prevent accidents in advance 

and to establish a maintenance and repair plan. 

Prognostics is classified into 3 type according to 

available information. 

Type 1 prognostics is conventional failure analysis that 

is performed based on reliability. It uses failure 

distribution model made from existing failure data and 

with this, predicts condition and lifetime averagely. 

Weibull, exponential, normal distribution analysis belong 

to Type 1 prognostics. 

Type 2 prognostics is operation condition based 

analysis that considers environmental effects 

(temperatures, loads, vibration, etc.) on a component. 

Regression analysis and Markov chain model belong to 

Type 2 prognostics. 

Type 3 prognostics is degradation due to ageing based 

analysis. It can predict more precisely than Type 2 

prognostics by considering ageing effects on components 

as well as environmental effects. 

This paper suggests Markov chain model belonging to 

Type 3 prognostics that can consider degradation due to 

ageing for considering ageing effects on NPPs 

 

2.2 Markov Chain Model 

 

Markov chain model is based on assumption of 

Markov process; Present state includes the information of 

previous states and next state is only dependent on 

present state. [3, 4] 

According to the assumption, if we have the 

information of present state and transition probability 

matrix, it is possible to predict next state. Transition 

probability matrix is composed of the probabilities that a 

certain state transfers to the other states at the next time. 

Equation 2.2.1 represents the transition probability 

matrix. 
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The rows of the transition probability matrix mean 

present state and the column means a state of the next 

time. In other words, an element of the matrix 𝑝𝑖𝑗  means 

the probability of transition to the state j from the present 

state i at next time. Thus, sum of each rows is 1. 

It is called MCMC that integrates Markov chain model 

with Monte Carlo Simulation (MCS). MCS methods 

performs simulation based on the probabilistic 

information of the subject system by generating a huge 

number of random sampling numbers. 

For the prognostics, MCMC can be used as follow. 

First, transition probability matrix is made from 

existing failure data. 

Next, simulation of transferring state is performed. 

MCS degrades the system until the extent of performance 

degradation reaches to a threshold by transferring state 

based on the transition probability matrix. The time that 

the extent of performance degradation reaches to the 

threshold is time-to-failure. Thus, residual useful lifetime 

(RUL) is difference between present time and the time-

to-failure. 

 

2.3 Case study – Prognostics for SG tube 

 

We performed prognostics for Steam Generator Tube 

Rupture (SGTR) accident as a case study. SGTR is 

caused by rupture at steam generator tube that is 

boundary between reactor coolant system and main steam 

system. Because radioactive materials can be leaked to 

external environment through the ruptured tube and 

secondary system, SGTR can cause severe consequences. 

Thus, it has relatively high frequency of initiating event. 

As a data for the case study, we used degradation data 

obtained by using PASTA (Probabilistic Algorithm for 

Steam generator Tube Assessment) program that 

performs assessment of integrity of steam generator tube. 

[5] Degradation data is represented as growth of burst 
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probability over time. The burst probability is recorded at 

every EFPY (Effective Full-Power Year). And in this 

study, 1 EFPY is 18 months. If the burst probability 

exceeds 40%, it is regarded as ‘failure’, then simulation 

is stopped immediately. In such a manner, we obtained 

130 data sets. We assumed 100 of those as an existing 

failure data, and assumed the rest 30 as a monitoring data 

for the study. For the 30 of monitoring data, we made 

those into 3 cases that have the burst probability data until 

6, 9, 12 EFPY respectively to show the characteristic of 

prognostics that accuracy of prognosis increases, as more 

monitoring data is accumulated.  

 

3. Results 

 

 Pre-processing of data 

Degradation data is represented as growth of burst 

probability over time. Markov chain model is performed 

based on transition probability of state. And the state 

must be discrete variable. Therefore, burst probability 

that is continuous variable have to be changed into 

discrete variable to apply Markov chain model to the 

degradation data. For this, we divided the data into 

several numbers of interval and assigned state numbers 

like 𝟎, 𝟏, 𝟐, ⋯ to each data as figure 1. 

 

 
Figure 1. Preprocessing of data 

 

 Training part 

Prognostics process using Markov chain model is 

separated by two parts; Training and Test part. 

At training part, transition probability matrix is 

obtained from existing failure data. The matrix is 

obtained by counting 𝑝𝑖𝑗 in equation 2.2.1 at every time. 

For example, if the system having state of 1 transfers to 

2, then 𝑝12  become 𝑝12 + 1 . Afterward, each 

components of the counted matrix are divided by sum of 

corresponding row’s components to be represented as 

ratio (or probability). Table 1 represents the transition 

probability matrix obtained from 100 of training data 

(existing failure data).  

 

Table 1. Transition probability matrix of failure data 

State 𝑖/𝑗 0 1 2 3 4 

0 0.72195 0.27805 0 0 0 

1 0 0.66415 0.33585 0 0 

2 0 0 0.52607 0.47393 0 

3 0 0 0 0.49412 0.50588 

4 0 0 0 0 1 

 

 Test part 

At test part, time-to-failure and RUL is predicted by 

using MCS with monitoring data and the transition 

probability matrix obtained from training part. Present 

state (last state of monitoring data) is transferred to the 

other state by MCS based on transition probability matrix. 

Transition simulation is performed until burst probability 

reaches to threshold. That is, the simulation is stopped 

when the state becomes ‘4’ that means threshold point, 

0.4 of burst probability. Time-to-failure is decided as the 

time that the state reaches to ‘4’ and RUL is difference 

between present time and the time-to-failure. For 30 of 

monitoring data sets, we performed transition simulation 

for 10,000 times using MCS. 

Figure 2 represents time-to-failure probability 

distribution. It is result of 10,000 times of simulation with 

one of the monitoring data sets. 

The figure shows that case 3 that has 12 EFPY 

monitoring data has narrowest distribution, on the 

contrary, case 1 that has 6 EFPY monitoring data has 

widest distribution. This shows one of characteristics of 

prognostics that more monitoring data enables more 

accurate prediction with less uncertainty. 

 

 
Figure 2. Time-to-failure probability distribution
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4. Conclusions 

 

The Markov chain model which is one of prognostics 

methods was described and the pilot demonstration for a 

SGTR accident was performed as a case study.  

The Markov chain model is strong since it is possible 

to be performed without physical models as long as 

enough data are available. However, in the case of the 

discrete Markov chain used in this study, there must be 

loss of information while the given data is discretized and 

assigned to the finite number of states. In this process, 

original information might not be reflected on prediction 

sufficiently. This should be noted as the limitation of 

discrete models.  

Now we will be studying on other prognostics methods 

such as GPM (General Path Model) which is also data-

driven method as well as the particle filer which belongs 

to physical-model method and conducting comparison 

analysis. Because, on the contrary to Markov chain, other 

methods can predict the extent of degradation as 

continuous value, it is expected that the one can replace 

or complement the pros and cons of the others. 
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