
Transactions of the Korean Nuclear Society Fall Meeting

Kyeongju, Korea, Oct 27-28, 2016

Practicality for Software Hazard Analysis for Nuclear Safety I&C System

Yong-Ho Kim

, Kwon-Ki Moon, Young-Woo Chang, Soo-hyun Jeong

KEPCO E&C, Inc., 989-111, Daedeok-dae-ro, Yuseong-gu, Daejeon, 34057, Korea
*Corresponding author: yongho@kepco-enc.com

1. Introduction

System is a framework of our world. The word

“system” used in engineering is also used in various

fields as a generalized term (e.g., social system, legal

system, and transport system, etc.).

We are using the concept of system safety in

engineering. It is difficult to make any system perfectly

safe and probably a complete system may not easily be

achieved.

The standard definition of a system from MIL-STD-

882E is: “The organization of hardware, software,

material, facilities, personnel, data, and services needed

to perform a designated function within a stated

environment with specified results.” From the

perspective of the system safety engineer and the

hazard analysis process, software is considered as a

subsystem [1].

Regarding hazard analysis, to date, methods for

identifying software failures and determining their

effects is still a research problem, especially since there

is no clear industry and regulatory consensus on the

meaning of “software failure.” [2]

Since the success of software development is based

on rigorous test of hardware and software, it is

necessary to check the balance between software test

and hardware test, and in terms of efficiency.

2. Hazard Theory

In order to perform hazard analysis, a basic

understanding of hazards and mishaps is required.

A hazard is comprised of the following three basic

components [3]:

Fig. 1. Hazard triangle.

1. Hazard Source (HS)

This is the basic hazardous resource creating the

impetus for the hazard, typically a hazardous energy

source such as explosives being used in the system

[3].

2. Initiating Mechanism (IM)

This is the trigger or initiator event(s) causing the

hazard to occur. The IM causes actualization or

transformation of the hazard from a dormant state to

an active mishap state [3].

3. Target and Threat Outcome (TTO)

This is the person or thing that is vulnerable (target),

the threat to that target (threat), and the resulting

severity outcome (outcome) when the mishap event

occurs. The outcome is the expected consequential

damage and loss [3].

Removal of any one of the triangle sides and the

hazard is eliminated because it is no longer able to

produce a mishap (i.e., the triangle is incomplete) [3].

In particular, removing IM is one of the easier ways

and the most effective means for detecting IMs is the

software test.

3. Software Hazard Analysis and Results

According to (system) hazard theory above, we

categorized software hazard components using software

hazard. Fig. 2 shows how this software hazard is

divided into the three basic software hazard

components.

Software

hazard

Software hazard

components

In the system

with potential

error, operator

could input a

numerical value

below

acceptable

range into the

system by

mistake. As a

result

unexpected

output signal

has occurred.

HS

In the system with

potential error

Causal

Factors IM

operator could

input a numerical

value below

acceptable range

into the system

IM by mistake

TTO

As a result

unexpected output

signal has

occurred.

Out-

come

Fig. 2. Example of software hazard components.

Per hazard theory above and the guidance of

NUREG/CR-6430 [4] software hazard analysis for

nuclear safety I&C system was performed to evaluate

the potential impact of plausible software failures on

identified hazards. Only the software portion of the

Hazard
Source

Initiating
Mechanism

Target/Threat
Outcome

Hazard

Transactions of the Korean Nuclear Society Fall Meeting

Kyeongju, Korea, Oct 27-28, 2016

system is considered. In particular, it is assumed that

the computer hardware operates without failure. As a

consequence of the above assumptions, the scope of

this analysis is concentrated on two key issues:

- If the software operates correctly, what is the

potential effect on system hazards?

- If the software operates incorrectly, what is the

potential effect on system hazards?

Examples of the software hazard analysis process

and input/output are as follows:

Table. 1. Software hazard analysis – input/output

Phase Input Procedure Output

Requirements

Phase

(Analytic target:

modules)

PHL*

PHA*

SysRS*

SRS*

Requirements
Phase RTM*

Deviations are defined as
hazardous states that are listed in
the PHL.

The causes and consequences
for each deviation are analyzed
and then the results and/or
recommendations are recorded.

A list of software hazard.
An analysis of the impact
on hazards of the software
when it operates correctly
or incorrectly with respect
to meeting each
requirement.

Design phase

(Analytic target:

subroutines)

PHL

PHA

SRS

SDD

Design Phase
RTM

Deviations are defined as
hazardous states that are listed in
the PHL for nuclear safety I&C
system.

An analysis of the impact
on hazards of the software
when the specified
software design is used.

Implementation

and Test phase

(Analytic target:

untested items)

PHL

PHA

SRS

SDD

Code

TC and TP

Implementation
and Test Phase
RTM

Deviations are defined as
hazardous states that are listed in
the PHL for nuclear safety I&C
system.

The product of the
implementation and test
phase HA contains the
information for further
verification of the code and
software testing (module,
unit, etc.) if there are any.

*HA: Hazard Analysis, PHA: Preliminary Hazard Analysis

PHL: Preliminary Hazard List

SRS: Software Requirements Specification

SysRS: System Requirements Specification

TC: Test Cases, TP: Test Procedure

RTM: Requirements Traceability Matrix

The software hazard analysis refers to the next Table.

Table. 2. Software hazard analysis table sample

Phase

Guide
Phrases

[IM]

Function Level
Deviation

[HS]

Causes

[IM]

Consequ

-ences

[TTO]

Safe-

guards

Hazard
Control

Verification
Method

Require-

ments

Phase

Numerical
value
within
range, but
wrong

Data used for the following
functions are within range,
but wrong:

[Modules]

MOVAVG,

W2IL10,

IL2W10,

R2W10,

FLOWMOD1,

TRIPBUF1,

UPDTMD1A,

POWRMOD1,

STATMOD1,

PFMOD1,

PFSNAP1,

.......

(The rest is omitted)

Entry error;
Programming
error;
Conversion
error.

Undetected
problem in
single
channel
could leave
failed
channel in
service.

Consistent
problem in
all
channels
could give
misleading
indication,
delay/preve
nt system
trip.

4 channel
redundancy;
channel alarm
on failures in
the following:
addressable
constants
updated
(automatically)
periodically
from OM and
MTP (with
CRC);
automatic
periodic CRC
calculation of
code and fixed
data;

.......

(The rest is
omitted)

Software
testing;
document and
code reviews;
administrative
control of
changes;
error reporting
and tracking;
periodic tests;
Cross channel
comparison.

Design

phase

Numerical
value
within
range, but
wrong

Data used for the following
subroutines are within
range, but wrong:

[subroutines]

SET_IO_CONFIGURATION
READ_GLOBAL_MEMORY
FLOW, UPDATE,
TRIPSEQ,

TRIP BUFFFERS,
WRITE_GLOBAL_MEMOR
Y,

MOVE_NETWORK_OUTP
UTS,

Same as
above

Same as
above

Same as
above

Same as
above

.......

(The rest is omitted)

Implemen-

tation and

Test

phase

Numerical
value
within
range, but
wrong

‘Test 2 – Inputs and
Outputs’ does not test this
deviation

‘Test 4 – CEAP/CCP
Inputs’ does not test this
deviation

‘Test 5 – COPP Static
Input’ does not test this
deviation

‘Test 6 – COPP Dynamic
Input’ does not test this
deviation

‘Test 10 – CEAP Snapshot’
does not test this deviation

‘Test 11 – COPP Trip
Buffer’ does not test this
deviation

‘Test 17 – RPC Test’ does
not test this deviation

‘Test 19 – CWP Test’ does
not test this deviation

.......

(The rest is omitted)

Same as
above

Same as
above

Same as
above

Same as
above

The software hazard analysis confirmed that with

adequate document review, code inspection and

software testing, the nuclear safety I&C system

software can perform its protection functions as

required.

The analysis on lessons learned demonstrates that the

nuclear safety I&C system software provides low

probability of creating hazards even when it fails.

Therefore the nuclear safety I&C system design is

capable of performing its protective functions with high

reliability.

It should be noted in Table 2 (e.g., Safeguards,

Hazard Control Verification Method), although hazard

analysis is performed, what reduce or mitigate hazards

are the task of implementation and test phase works

such as redundancy, code review, software test and

integrated test. That is, the major role for measures is

the realistic system configuration, extensive test action

and diagnostics, etc.

Also, in the latest report, it is described that the

extensive testing of the integrated hardware/software

system in its native environment still remains the most

useful approach to reducing software hazards due to

system changes. Because the current ability remains

weak in using inspections to detect errors introduced in

requirements, design and implementation, software

development success can depend strongly on extensive

testing, diagnostics and repair of the source code [2].

Faults that have not been introduced during the

development process of the complex logic or that have

been removed during verification and validation will

never appear in use [5].

In other words, the direction of the services

centralized could be considered through the experience

and portion of the mutual role of hazard analysis and

test.

Transactions of the Korean Nuclear Society Fall Meeting

Kyeongju, Korea, Oct 27-28, 2016

4. Conclusions

Lessons learned and experience from similar systems

are important for the work of hazard analysis. No major

hazard has been issued for the software developed and

verified in Korean NPPs. In addition to hazard analysis,

software development, and verification and validation

were thoroughly performed.

It is reasonable that the test implementation including

the development of the test case, stress and abnormal

conditions, error recovery situations, and high risk

hazardous situations play a key role in detecting and

preventing software faults.

As a conclusion, while maintaining the current

hazard analysis level, rigorous test is a more

recommended approach.

REFERENCES

[1] MIL-STD-882E, “DOD Standard Practice -

System Safety”, 2012.

[2] EPRI, “Hazard Analysis Methods for Digital

Instrumentation and Control Systems”, Technical

Report, 2013.

[3] Clifton A. Ericson, “Hazard Analysis Techniques

for system safety”, 2015.

[4] NUREG/CR-6430, “Software Safety Hazard

Analysis”, 1996.

[5] NUREG/IA-0254, “Suitability of Fault Modes and

Effects Analysis for Regulatory Assurance of

Complex Logic in Digital Instrumentation and

Control System”, 2011.

