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1. Introduction 

 

Conventionally, the pin-power reconstruction method 

in conjunction with an assembly-wise nodal analysis has 

been a standard way to obtain a pin-level solution since 

a pin-wise analysis is costly and time-consuming. If one 

can overcome these limitations, a pin-wise reactor 

analysis is expected to be one nice way to obtain a 

detailed pin-level solution. Recently, the HCMFD 

(Hybrid Coarse-Mesh Finite Difference) algorithm has 

been suggested as a breakthrough for the pin-wise 

approach by which parallel computing can be performed 

very effectively [1-3]. 

To maximize parallel computational efficiency, an 

iterative local-global strategy is adopted in the HCMFD 

algorithm. The global eigenvalue problem is solved by 

one-node CMFD, and the local fixed-source problems 

are solved by two-node CMFD based on the pin-wise 

nodal solutions. In such a local-global scheme, the 

computational cost is mostly concentrated in solving 

local problems which can be solved in parallel, enabling 

the effective application of parallel computing. 

Previously, the feasibility of the HCMFD algorithm 

was evaluated only in a 2-D scheme. In this paper, the 

3D HCMFD algorithm with some possible variations in 

treating the axial direction is introduced.  

 

2. Methodology 

 

In the HCMFD algorithm, two CMFD methods are 

nonlinearly coupled for the iterative local-global strategy, 

as shown in Fig. 1. The solution of the global eigenvalue 

problem provides the basis for the local fixed-source 

problems, and the solutions of the local problems are 

used as reference quantities to produce the correction 

factors for the global one-node CMFD. 

 

 
Fig. 1. Schematic diagram of HCMFD algorithm 

In the x-y plane, each single fuel assembly was treated 

as a coarse mesh in the one-node CMFD, while the pin-

wise mesh is actually considered for the higher-order 

solution. Unlike the 2-D case, the axial (z-directional) 

node size in local problems can be much bigger than that 

in the x-y directions and the aspect ratio of the 3D node 

can be very far from unity in 3-D applications of the 

HCMFD algorithm.  

As in the 2D scheme, the standard NEM (nodal 

expansion method) based on the 4th-order polynomials is 

used in pin-level for the x-y directions. Meanwhile, for 

the axial direction, several variations are given on the 

axial mesh size and even on the method itself in this work.  

When there exists a non-negligible heterogeneity in 

the axial direction, the axial direction should also be 

treated sufficiently accurately and one easy way is to 

divide the axial coarse mesh into several meshes. 

However, since the more mesh divisions in the axial 

direction also means an increase in the number of the 

radial interfaces by several times in a 3-D scheme, it 

would be desirable to achieve the desired axial accuracy 

with a minimum number of mesh divisions. For this, the 

ANM (Analytic Nodal Method) is also tried in this paper 

only for the axial nodal analysis as in Fig. 2, by which 

one can get a better solution with the same mesh size but 

with more cost than by the NEM. 

 

 
Fig. 2. Nodal methods used in each direction 

 

2.1 One-node CMFD for Global Eigenvalue Problem 

 

As in Fig. 3, two correction factors are introduced for 

each interface in the one-node CMFD method. The two 

correction factors are produced as Eq. (1) and (2) using 

the reference surface flux and net current, and they are 

implemented in the global net current formulation as Eq. 

(3) to preserve the reference higher-order surface-

average information. In this case, the reference surface-

averaged flux and net current are calculated by taking the 

average of the quantities obtained from local fine-mesh 

nodal calculations. 
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Fig. 3. Inner interface in one-node CMFD 
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(3) 

 

2.2 Two-Node CMFD for Local Fixed-Source Problem 

 

In the two-node CMFD approach, only one correction 

factor is introduced for each interface as described in Fig. 

4 to preserve the net current. The correction factor is 

determined using reference net currents as Eq. (4) and (5) 

and it is used in the net current formulation as Eq (6) to 

preserve the reference net current. In the current nodal-

based HCMFD, the reference net current is obtained by 

pin-wise NEM or ANM calculation. 

 

 
Fig. 4. Inner interface in one-node CMFD 
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Since the local problems are fixed-source problems, 

the incoming partial currents are given on the boundary. 

The correction factor and corrected net current on the 

boundary, especially for the right-end boundary, are 

expressed as Eqs. (7) and (8). Those for the left-end 

boundary can similarly be obtained. In 3-D HCMFD, this 

process is repeated for all 3 directions. 

 

 
Fig. 5. Right-end boundary in two-node CMFD 
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(8) 

 

Basically, the global node balance is implemented to 

each local problem in terms of the modulated fluxes, and 

the boundary conditions are given by the modulated 

incoming partial currents. For a better convergence, the 

local two-node CMFD calculation is performed twice per 

one local analysis, with an overall exchange of partial 

currents and transverse leakages between local problems. 

In this way, the newest high-order quantities evaluated 

by solving a local problem can be reflected in 

neighboring local problems in real time, so that the 

convergence can be accelerated and also the possible 

numerical instability at the early stage of the local-global 

iteration can be eliminated. 

 

3. Numerical Results 

 

In this work, a 2-D modified EPRI-9R benchmark 

problem described in Fig. 6 was simply extended to a 3-

D problem as in Fig. 7. The active core height is set to be 

200cm with upper and lower 20cm reflector layers, and 

the coarse mesh height is 20cm. In this study, two cases 

were considered to see the sensitivity regarding the axial 

partitioning, one with the central control rod fully 

inserted (Case 1), and the other case with the control rod 

inserted to the mid-plane of the active core (Case 2).  

The convergence criterion for the fission source and 

eigenvalue was 10-7, and the local and global problems 

were both solved by a BiCGSTAB (Biconjugate gradient 

stabilized) method [4]. The local analysis was performed 

every 10 global outer iterations, which is an optimized 

number in terms of computing time for the two 3-D cases. 

All calculations were performed on Intel Xeon E5-2697 

v3 2.60 GHz CPU. Parallel computation was performed 

using the OpenMP parallel algorithm [5] in this study. 
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Fig. 6. 2-D modified EPRI-9R benchmark problem 

 

 
Fig. 7. 3-D extension of EPRI-9R benchmark problem 

 

First, the parallelizable portion of the whole 

computational loads, the so-called parallelism, 

depending on the axial partition was briefly analyzed in 

Case 1 with NEM for the axial direction (Table I). Even 

with the minimum axial partition with a 20 cm mesh size, 

the parallelism is 99.48%, and it further increases to 

99.98% when the number of axial nodes is increased by 

a factor of 10. Table I indicates that the parallel 

computational efficiency of the 3D HCMFD algorithm 

can possibly be quite high. 

 

Table I: Parallelism in Case 1 

Method Mesh size (cm) Parallelism (%) 

HCMFD-NEM 1.4 × 1.4 × 20 99.48 

HCMFD-NEM 1.4 × 1.4 × 2 99.98 

 

With the OpenMP parallel architecture, the parallel 

computational efficiency was analyzed in Case 1 with 

two different axial partitions and the results are shown in 

Table II. As expected, the overall parallel computational 

efficiency is better in the cases with more axial divisions 

and the parallel efficiency for 20 cores is 50~59% for a 

relatively small size problem. 

 

 

 

 

Table II: Parallel Computational Efficiency in Case 1 

No. of 

core 

Axial layers 

per local 

problem 

CPU time 

(sec) 

Speed 

-up 

Efficiency 

(%) 

1 1 22.04 - -- 

2 1 11.44 1.93 96.33 

5 1 5.66 3.89 77.88 

10 1 3.37 6.54 65.40 

20 1 2.16 10.20 51.02 

1 4 144.89 - -- 

2 4 75.00 1.93 96.59 

5 4 36.68 3.95 79.00 

10 4 20.88 6.94 69.39 

20 4 12.38 11.70 58.52 

 

To investigate the numerical performances 

depending on the number of axial layers and the type of 

nodal method in local problems, two benchmarks were 

solved by NEM and ANM with various axial partitions 

as shown in Table III and IV. For comparison, fine-mesh 

FDM solutions are also included, but it should be noted 

that they cannot be true references since the mesh size 

for FDM was not small enough. In this work, the k-eff 

values by HCMFD with 10 axial layers were chosen as 

reference values. 

In Table III, one can note that the axial mesh 

refinement results in a converged solution for the two 

cases. For the 1st benchmark (Case 1), both of the axial 

NEM and ANM with a coarse mesh (10~20cm) can 

provide accurate solutions, while the solution is more 

sensitive to the axial mesh size in Case 2. This is because 

the axial flux profile is rather smooth in Case 1 and it is 

strongly position-dependent due to the partial insertion 

of the control rod.  

In case of high axial heterogeneity, the axial mesh 

size for the NEM should be rather small, 5~10cm, for a 

reasonably accurate solution. When the ANM is used for 

the axial direction in Case 2, the k-eff error is smaller 

than that by NEM with an axial mesh size smaller than 

10cm. However, the improvement in accuracy is not 

satisfactory when compared to the conventional 

tendency between NEM and ANM. It is supposed that it 

to be due to that It seems that some more improvement 

is required to adapt the ANM in HCMFD algorithm. 

 

Table III: Sensitivity in k-eff, Case 1 

Method Mesh size keff 
Error 

(pcm) 

FDM 0.2×0.2×2 0.881083 1.2 

HCMFD-NEM 1.4×1.4×2 0.881071 Ref. 

HCMFD-NEM 1.4×1.4×20 0.881047 2.4 

HCMFD-NEM 1.4×1.4×10 0.881069 0.2 

HCMFD-NEM 1.4×1.4×5 0.881071 0.0 

HCMFD-ANM 1.4×1.4×20 0.881077 0.5 

HCMFD-ANM 1.4×1.4×10 0.881073 0.2 

HCMFD-ANM 1.4×1.4×5 0.881071 0.0 
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Table IV: Sensitivity in k-eff, Case 2 

Method 
Mesh size 

(cm) 
keff 

Error 

(pcm) 

FDM 0.2×0.2×1 0.905650 -5.0 

HCMFD-NEM 1.4×1.4×2 0.905700 Ref. 

HCMFD-NEM 1.4×1.4×20 0.905876 17.6 

HCMFD-NEM 1.4×1.4×10 0.905755 5.5 

HCMFD-NEM 1.4×1.4×5 0.905712 1.2 

HCMFD-ANM 1.4×1.4×20 0.905883 18.3 

HCMFD-ANM 1.4×1.4×10 0.905746 4.6 

HCMFD-ANM 1.4×1.4×5 0.905709 0.9 

 

4. Conclusions 

 

The HCMFD algorithm was successfully extended to 

a 3-D core analysis without any numerical instability 

even though the axial mesh size in local problems is quite 

different from the x-y node size. We have shown that 3D 

pin-wise core analysis can be done very effectively with 

the HCMFD framework. Additionally, it was 

demonstrated that parallel efficiency of the new 3D 

HCMFD scheme can be quite high on a simple OpenMP 

parallel architecture. It is concluded that the 3D HCMFD 

will enable an efficient pin-wise 3D core analysis. 
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