

Comparision between Two Bromine Containing Free Radical Initiators in PRESAGE[®] Dosimeter

Hyeonsuk Park

ssook7979@gmail.com

Contents

1. Introduction

2. Materials and Methods

3. Results and Discussion

4. Conclusion

RPLab

Introduction

- Presage is solid type dosimeter
- Which contains halocarbon radical initiator and Leucomalachite green (LMG) dye
- Halocarbon initiator is ionized upon irradiation and oxidizes LMG to be green colored MG

RPLa

Introduction

- There has been a lot of studies regarding the effect of changing LMG and initiator ratio or comparing among different halogen containing initiator.
- But lack of studies about same halogen containing initiator or the effect of adding subsidiary material.
- The aim of this study
- > To see the effect of adding LMG solvent and
- Compare the two radical initiators C₂H₂Br₄ and CBr₄ which contains same halogen atom, Bromine
- While maintaining the water-equivalency of dosimter.

Br

B

Br''''

'Br

(IIII) Br

RPLab

Materials and Methods

Chemical Formula for Presage dosimeters

	Initiator	
Formulation A	CBr ₄ 0.56 wt%	Cyclohexanone 7 wt%
Formulation B	CBr ₄ 0.56 wt%	Cyclohexanone 3 wt%
Formulation C	C ₂ H ₂ Br ₄ 0.56 wt%	-
Formulation D	C ₂ H ₂ Br ₄ 0.56 wt%	Cyclohexanone 3 wt%

- All formulation contained same a mount of Dibutyltin Dilaurate catalyst (0.05 wt%)
- Crystal Clear 200 (Smooth-On, Easton, PA USA) urethane was used as a base.

Materials and Methods

- Effective atomic number (Z_{eff}) calculation
- The elemental composition of the Smooth-On Crystal Clear series is C:63.3 %, H: 9.4 %, N: 5.0 %, O: 21.3 % (M. Alqathami et al., Radiation Physics and chemistry 81(7), 2012).
- > The effective atomic numbers of all dosimeters were calculated using Mayneord equation.

$$Z_{eff} = \sqrt[2.94]{\sum_{i=1}^{n} a_i Z_i^{2.94}}$$

where \mathbf{a}_i is the fractional contributions of each element to the total number of electrons in the mixture and \mathbf{Z}_i is the atomic number of each element.

Materials and Methods

- Irradiation
- X-RAD320 biological irradiation (Precision X-Ray Inc., USA)
- > 250 kVp, 15 mA with 2 mm Al filter
- > 35 cm SSD with 10×10 cm² field size
- Absorbance measurements
- Perkin-Elmer Lambda 35 UV-Vis spectrophotometer
- ➢ Wavelength range of 500-700 nm
- ➤ 4 points along the length of the cuvette were measured and averaged.
- > To test the post-irradiation effect, absorbance was measured over 4 days.

• Effective atomic number calculations

	Formulati on A	Formulati on B	Formulati on C	Formulati on D	water
W _H (wt %)	9.32	9.32	9.32	9.32	11.19
W _C (wt %)	63.34	63.43	63.43	63.42	-
W _N (wt %)	5.05	5.05	5.04	5.04	-
W _O (wt %)	20.72	20.72	20.75	20.74	88.81
W _{Br} (wt %)	0.58	0.50	0.52	0.53	-
W _{Sn} (wt %)	0.01	0.01	0.01	0.01	-
Z _{eff}	7.49	7.49	7.46	7.45	7.42

• All dosimeters showed similar values to water.

• Absorption spectrum

- The maximum absorption occurred at 629 or 630 nm.
- The Maximum peak values were increased along with the exposed dose.
- All dosimeters showed the same absorption trends.

Calibration curves (2 hrs after irradiation)

▲ Formulation B ● Formulation C

Formulation D

Formulation A

- > All calibration curve showed **high linearity** (R²>0.99).
- CBr₄ initiator is about 4 times more sensitive than
 C₂H₂Br₄ initiator although they have similar amount
 of C-Br bond.
- There is no significant effect of adding
 cyclohexanone on sensitivity.

Rac

RPLab

Results and discussion

Post-irradiation effect (5 Gy)

- The absorbance of the CBr₄ containing dosimeters (Formulation A,B) decreased rapidly before they were stabilized (23.16 % and 28.46 % each).
- While C₂H₂Br₄ containg dosimeters (Formulation C,D) changed 12.14 % and 12.68 % each.
- There is no significant effect of adding

cyclohexanone in case of $C_2H_2Br_4$.

RPLab

Results and discussion

• Effect of solvent on CBr₄ initiator

3 wt% solvent with CBr₄

7 wt% solvent with CBr₄

- There were an effect of reduced solvent on CBr₄ in post-irradiation response.
- Some time after the irradiation, 3 wt% solvent containing formulation lost its linearity continuously while

7 wt% solvent containg formulation maintain its high linearity (R²>0.99) over time.

 The cyclohexanone solvent reduces the ionization energy of CBr₄ into CBr₃ + Br⁻.

$$\begin{array}{ccc} CBr_{4} + Cyclohexanone & \longrightarrow & CBr_{4}^{+} & (Unstable) \\ CBr_{4}^{+} & \longrightarrow & CBr_{3}^{\bullet}Br \\ CBr_{3}^{\bullet}Br & \xrightarrow{4.14 \ eV} & CBr_{3}^{+}Br^{-} \end{array}$$

- The reduction of linearity in 3 wt% cyclohexanone and CBr4 initiator may be related to the reduction of the amount of solvent.
- Cyclohexanone, as a nonpolar solvent, seems act as a cage which prevent recombination of the once ionized initiator.
- Because of the reduction in solvent, the ion recombination occurred fast especially at high dose.

Conclusion

- <u>CBr₄</u> was more sensitive to the radiation and emitted 4 times more free radials upon irradiation with no additional effective atomic number.
- But the absorbance after irradiation was highly variable with time.
- For stable measurement, C₂H₂Br₄ would be more appropriate as a free radical initiator.
- The solvent <u>cyclohexanone may affect the performance of the dosimeter</u> especially when it is used with CBr₄.
- CBr₄ can be considered as a high sensitive dosimeter with fast scanning device.
- With appropriate solvent, <u>CBr₄ can be used as a high sensitive initiator</u> while maintaining its water-equivalency.

Discussion & Question

Thank you for your attention

