
Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 27-28, 2016

Failure Mode and Effect Analysis of the Application Software of the Safety-critical I&C
System in APR1400

Koheun Kim a, Yong geul Kima, Woong seok Choia, Se do Sohna,

a KEPCO Engineering & Construction, Inc., 989-111 Daeduckdaero, Yuseong-gu, Daejeon, Korea
*Corresponding author: high07@kepco-enc.com

1. Introduction

Safety computer system development requires

identification of hazards that have the potential for
defeating a safety function in nuclear power plant
(NPP). Hazards include external events as well as
conditions internal to the computer hardware and
software [1]. In APR1400, the computer software
hazard analysis is performed by hazard and operability
analysis (HAZOP) method. Meanwhile, HAZOP has its
limitation and cannot be considered better than fault
tree analysis (FTA) or failure mode and effect (FMEA)
analysis. HAZOP assumes that the system has been
carefully studied, and all possible hazards, their effects
or consequences and remedies are incorporated in the
system. But incorporating every possible event in the
design is impossible [2].

In this light, this paper attempts to use FMEA
method for evaluating the risk for safety-critical
instrumentation and control (I&C) system software for
NPP which is more practically than HAZOP. Moreover,
the possible common cause failure (CCF) due to
software is evaluated from its result, though the FMEA
is for single failure analysis. It is possible because the
software failures are due to systematic faults that
causing simultaneous failure in multiple division when
the triggering event happens [3]. This analysis is
applied to safety-critical system of Shin-Hanul units 1
and 2 NPP, i.e., APR1400.

2. Methods and Results

In this section, it introduces the software FMEA and

an example for the application of the proposed
methodology to the plant protection system (PPS) of
APR1400.

2.1 Software FMEA

FMEA is a qualitative method of reliability analysis

which involves the study of the failure modes which
can exist in every sub-item of the item and the
determination of the effects of each failure mode on
other sub-items of the item and on the required
functions of the item. The software FMEA (SFMEA) is
a version of the FMEA for software. Sometimes, the
SFMEA requires the knowledge of analyzer on the
software because only little data may be available to
perform SFMEA [4]. To perform the FMEA on
software, it should set-up an approach by its own

knowledge and take into other studies that have
performed it. In terms of its sight, SFMEA includes the
following steps:

1) Define the system to be analyzed
2) Construct the functional block diagrams.
3) Identify and set up the list of all potential

software failure modes
4) Evaluate each failure mode in terms of the worst

potential consequences.

Initially, the scope of the software needs to be

defined. Then, the unit of the software component
should be defined for the analysis. This study regards
the modules of software as the software component.
Generally, the application software of safety-critical
systems is designed in modules (or tasks). The
component unit could be defined in sub-modules or
even in the smallest functional block level of the
application software, depending on the determination
by the safety engineer.

Based on the software unit, the failure mode is
investigated. Next, each module is analyzed for its
failure mode effect, cause, criticality, and significance
of CCF as illustrated in Table 1. Through the process,
the failure modes which may lead to CCF are identified
and evaluated to determine the associated risk level
(e.g., high or intermediate or low) based on the failure
effect. The failure modes that are classified as having
high criticality and significant CCF are evaluated. As a
result, SFMEA identifies the failure modes and their
causes that lead software failure and furthermore CCF
in the system.

Table I. SFMEA Matrix Column Headings

Heading Contents
Ref. No Number to identify in the block

diagram
Component Name of the Component
Failure Mode Potential component failure mode
Cause Cause of the Failure mode

1) Programming error:
Implementation phase
2) Human error: O&M phase
3) Design error: Concept,
Requirement, Design phase
4) System or hardware error:
Interface with component designer

Failure effect Failure effect and the consequence
Criticality C: high, CM: limited, NC: low
Significant CCF Y:Yes, N: No

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 27-28, 2016

Comment/Value Comments or value of the output

signal that affects to the other task
or system

2.2 SFMEA for PPS

This section presents an example for the application

of the SFMEA to the PPS application software of Shin-
Hanul units 1 and 2, i.e., APR1400. It identifies the
possible software failure modes and their causes which
lead to significant CCF in PPS. The scope of the
software in PPS is limited to the bistable processor (BP)
and coincidence processor (CP) protection grade
application software. The unit of the software
components is defined in task or called as program.
Each and every task executes on its own determined
cycle time but the data are interdependent on each other.
BP application software is composed of four (4) tasks
which execute sequentially on its priority;

1) BP_LOGIC 1.0
2) BP_LOGIC 1.1
3) BP_DIAGNOSTIC 2.0
4) BP_SETPOINT 3.0

Likewise, CP application software is composed of

two (2) tasks which execute sequentially on its priority;

1) CP_LOGIC 1.0
2) CP_SUPERVISING 2.0.

BP and CP application software architecture for

Shin-Hanul units 1 and 2 is depicted in detail in the
reference Kim, C.H. et al. (2011) [5].

The definition of realistic failure modes for CCF is
an important input to the SFMEA, therefore, the task
failure modes are derived from the definition of its
correct behaviors, which means the failure modes are
the opposite of the correct behaviors:

1) Task execution time is bounded.
2) Task performs intended actions and does not

perform unintended action.
A. Provides expected outputs.
B. Variables keeps their value until they are

modified.
C. Interacts as expected with I/O board.
D. Interacts as expected with CPU resources.
E. Interacts as expected with shared memory

(or retention memory).
F. Does not modify code memory and

constants.

In addition, the PLC manual supplements the defined
failure modes by defining the failure mode precisely.
Before the evaluation, the assumptions of the system

should be set up. The assumptions of the PPS
application software are as follows;

1) Test logic does not prevent the system from
performing its protective function

2) Communication between processors and the
validity signals are provided with signals. The
validity signals are for checking the integrity of
the signals in the receiving processor.

3) Though a task has an error which is detected and
the task stops, the invalid data from the task will
not affect to the other tasks.

4) Fail-safe status is defined by the designer.
Meanwhile, the failures which might be detected
by system software and led to a fail-safe state are
excluded for high criticality.

5) Input read and output read are controlled by
system task, i.e., operating system.

Table II. SFMEA of example

Heading Contents
Ref. No 1.0
Component BP_LOGIC
Failure Mode Provides erroneous values with

valid hardware status
Cause Programming error, Hardware read

error or Design error
Failure effect 1) Erroneous values are transmitted

to the coincidence processer (CP)
with valid status
2) Risk of unsafe output

Criticality C
Significant CCF Y
Comment/Value Value: Trip

Validity bit: Trip quality

As a result, the SFMEA for the PPS identified 11
failure cases that are critical and can lead to significant
CCF. One of the cases is illustrated in Table II. Table II
shows the result of SFMEA for the selected failure
mode, i.e., “Provides erroneous trip values when
Hardware is ok”. This failure mode prevents the PPS
from initiating the trip signal in the BP due to erroneous
process values, when the trip is required. This failure
mode could be caused by “programming error” or
“hardware read error”, or “design error”. The reactor
trip is related to the safety function in the system. In
this regard, failure mode of the trip value is considered
as critical and significant.

This model have acquired some advantages from
using SFMEA compare to HAZOP method which also
carry out risk analysis: 1) SFMEA makes a systematical
and analytical approach to figure out the possible
failure modes and the causes in the software; 2)
SFMEA entails the analysis of software architecture
and categorizes the level of criticality to the modules.

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 27-28, 2016

These results can helps later on with the developing the
software.

3. Conclusions

Through SFMEA, the critical software failure modes
and tasks that could result in CCF are identified and
also evaluated to determine the associated risk level (e.g.
high or intermediate or low) based on the failure effect.
Biggest benefit from this analysis comparing with
HAZOP is it can reveal the possible weak points and
provide the guidance to the V&V team by helping to
generate the test cases. Furthermore, the list of causes
could be organized and the relationship among the
elements that contributes to CCF could be substantiated.

REFERENCES

[1] IEEE, IEEE 7-4.3.2, IEEE Standard Criteria for Digital
Computer in Safety Systems of Nuclear Power Generating
Station ,2003.
[2] A.A. Haider and A. Nadeem, “A Survey of Safety
Analysis Techniques for Safety Critical Systems”,
International Journal of Future Computer and Communication,
Vol.2, No.2, April 2013.
[3] E. R. S, J.-B. Mariana, A. Yousef and B. Herve,
"Modeling of digital I&C and software common cause
failures: lessons learned from PSA of TELEPERM XS based
Protection System," in PSAM 12, 2014.
[4] L. Ristord and C. Esmenjaud, “FMEA Performed on the
SPINLINE3 Operational System Software as part of the
TIHANGE 1 NIS Refurbishment Safety Case”, NEA/CSNI/R
(2002)1/VOL2 (2001).
[5] C. H. Kim, D. Y. Oh, K. Kim, S. D. Sohn, J. H. Kim, H. B.
Kim and W.S. Choi, "Development of Safety Critical
Software for Nuclear Power Plant using a CASE Tool," in
ICI2011 (ISOFIC, CSEPC, ISSNP 2011), Daejeon, Korea,
2011.

