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1. Introduction 

 
Safety computer system development requires 

identification of hazards that have the potential for 
defeating a safety function in nuclear power plant 
(NPP). Hazards include external events as well as 
conditions internal to the computer hardware and 
software [1]. In APR1400, the computer software 
hazard analysis is performed by hazard and operability 
analysis (HAZOP) method. Meanwhile, HAZOP has its 
limitation and cannot be considered better than fault 
tree analysis (FTA) or failure mode and effect (FMEA) 
analysis. HAZOP assumes that the system has been 
carefully studied, and all possible hazards, their effects 
or consequences and remedies are incorporated in the 
system. But incorporating every possible event in the 
design is impossible [2]. 

In this light, this paper attempts to use FMEA 
method for evaluating the risk for safety-critical 
instrumentation and control (I&C) system software for 
NPP which is more practically than HAZOP. Moreover, 
the possible common cause failure (CCF) due to 
software is evaluated from its result, though the FMEA 
is for single failure analysis. It is possible because the 
software failures are due to systematic faults that 
causing simultaneous failure in multiple division when 
the triggering event happens [3]. This analysis is 
applied to safety-critical system of Shin-Hanul units 1 
and 2 NPP, i.e., APR1400. 
 

2. Methods and Results 
 
In this section, it introduces the software FMEA and 

an example for the application of the proposed 
methodology to the plant protection system (PPS) of 
APR1400. 

 
2.1 Software FMEA 

 
FMEA is a qualitative method of reliability analysis 

which involves the study of the failure modes which 
can exist in every sub-item of the item and the 
determination of the effects of each failure mode on 
other sub-items of the item and on the required 
functions of the item. The software FMEA (SFMEA) is 
a version of the FMEA for software. Sometimes, the 
SFMEA requires the knowledge of analyzer on the 
software because only little data may be available to 
perform SFMEA [4]. To perform the FMEA on 
software, it should set-up an approach by its own 

knowledge and take into other studies that have 
performed it. In terms of its sight, SFMEA includes the 
following steps: 

1) Define the system to be analyzed 
2) Construct the functional block diagrams. 
3) Identify and set up the list of all potential 

software failure modes 
4) Evaluate each failure mode in terms of the worst 

potential consequences. 
 
Initially, the scope of the software needs to be 

defined. Then, the unit of the software component 
should be defined for the analysis. This study regards 
the modules of software as the software component. 
Generally, the application software of safety-critical 
systems is designed in modules (or tasks). The 
component unit could be defined in sub-modules or 
even in the smallest functional block level of the 
application software, depending on the determination 
by the safety engineer.  

Based on the software unit, the failure mode is 
investigated. Next, each module is analyzed for its 
failure mode effect, cause, criticality, and significance 
of CCF as illustrated in Table 1. Through the process, 
the failure modes which may lead to CCF are identified 
and evaluated to determine the associated risk level 
(e.g., high or intermediate or low) based on the failure 
effect. The failure modes that are classified as having 
high criticality and significant CCF are evaluated. As a 
result, SFMEA identifies the failure modes and their 
causes that lead software failure and furthermore CCF 
in the system. 

 

Table I. SFMEA Matrix Column Headings 

Heading Contents 
Ref. No Number to identify in the block 

diagram 
Component Name of the Component 
Failure Mode Potential component failure mode 
Cause Cause of the Failure mode 

1) Programming error: 
Implementation phase 
2) Human error: O&M phase 
3) Design error: Concept, 
Requirement, Design phase 
4) System or hardware error: 
Interface with component designer 

Failure effect Failure effect and the consequence 
Criticality C: high, CM: limited, NC: low 
Significant CCF Y:Yes, N: No 
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Comment/Value Comments or value of the output 

signal that affects to the other task 
or system 

 
 
2.2 SFMEA for PPS 

 
This section presents an example for the application 

of the SFMEA to the PPS application software of Shin-
Hanul units 1 and 2, i.e., APR1400. It identifies the 
possible software failure modes and their causes which 
lead to significant CCF in PPS. The scope of the 
software in PPS is limited to the bistable processor (BP) 
and coincidence processor (CP) protection grade 
application software. The unit of the software 
components is defined in task or called as program. 
Each and every task executes on its own determined 
cycle time but the data are interdependent on each other. 
BP application software is composed of four (4) tasks 
which execute sequentially on its priority; 

 
1)  BP_LOGIC 1.0 
2)  BP_LOGIC 1.1 
3)  BP_DIAGNOSTIC 2.0 
4)  BP_SETPOINT 3.0 
 
Likewise, CP application software is composed of 

two (2) tasks which execute sequentially on its priority; 
 
1) CP_LOGIC 1.0 
2) CP_SUPERVISING 2.0. 
 
BP and CP application software architecture for 

Shin-Hanul units 1 and 2 is depicted in detail in the 
reference Kim, C.H. et al. (2011) [5]. 

The definition of realistic failure modes for CCF is 
an important input to the SFMEA, therefore, the task 
failure modes are derived from the definition of its 
correct behaviors, which means the failure modes are 
the opposite of the correct behaviors: 

 
1) Task execution time is bounded. 
2) Task performs intended actions and does not 

perform unintended action. 
A. Provides expected outputs. 
B. Variables keeps their value until they are 

modified. 
C. Interacts as expected with I/O board. 
D. Interacts as expected with CPU resources. 
E. Interacts as expected with shared memory 

(or retention memory). 
F. Does not modify code memory and 

constants. 
 

In addition, the PLC manual supplements the defined 
failure modes by defining the failure mode precisely. 
Before the evaluation, the assumptions of the system 

should be set up. The assumptions of the PPS 
application software are as follows; 

1) Test logic does not prevent the system from 
performing its protective function 

2) Communication between processors and the 
validity signals are provided with signals. The 
validity signals are for checking the integrity of 
the signals in the receiving processor. 

3) Though a task has an error which is detected and 
the task stops, the invalid data from the task will 
not affect to the other tasks. 

4) Fail-safe status is defined by the designer. 
Meanwhile, the failures which might be detected 
by system software and led to a fail-safe state are 
excluded for high criticality. 

5) Input read and output read are controlled by 
system task, i.e., operating system.  

 

Table II. SFMEA of example 

Heading Contents 
Ref. No 1.0 
Component BP_LOGIC 
Failure Mode Provides erroneous values with 

valid hardware status 
Cause Programming error, Hardware read 

error or Design error 
Failure effect 1) Erroneous values are transmitted 

to the coincidence processer (CP) 
with valid status 
2) Risk of unsafe output 

Criticality C 
Significant CCF Y 
Comment/Value Value: Trip 

Validity bit: Trip quality 
 

As a result, the SFMEA for the PPS identified 11 
failure cases that are critical and can lead to significant 
CCF. One of the cases is illustrated in Table II. Table II 
shows the result of SFMEA for the selected failure 
mode, i.e., “Provides erroneous trip values when 
Hardware is ok”. This failure mode prevents the PPS 
from initiating the trip signal in the BP due to erroneous 
process values, when the trip is required. This failure 
mode could be caused by “programming error” or 
“hardware read error”, or “design error”. The reactor 
trip is related to the safety function in the system. In 
this regard, failure mode of the trip value is considered 
as critical and significant.  

This model have acquired some advantages from 
using SFMEA compare to HAZOP method which also 
carry out risk analysis: 1) SFMEA makes a systematical 
and analytical approach to figure out the possible 
failure modes and the causes in the software; 2) 
SFMEA entails the analysis of software architecture 
and categorizes the level of criticality to the modules. 



Transactions of the Korean Nuclear Society Autumn Meeting 
Gyeongju, Korea, October 27-28, 2016 

 
 
These results can helps later on with the developing the 
software. 
 
 

3. Conclusions 
 

Through SFMEA, the critical software failure modes 
and tasks that could result in CCF are identified and 
also evaluated to determine the associated risk level (e.g. 
high or intermediate or low) based on the failure effect. 
Biggest benefit from this analysis comparing with 
HAZOP is it can reveal the possible weak points and 
provide the guidance to the V&V team by helping to 
generate the test cases. Furthermore, the list of causes 
could be organized and the relationship among the 
elements that contributes to CCF could be substantiated. 
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