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1. Introduction 

The Experimental Breeder Reactor I (EBR-1) at 

Argonne National Laboratory was designed to 

demonstrate fast reactor breeding and to prove the 

use of liquid-metal coolant for power production 

and reached criticality in August 1951. The EBR-I 

reactor was undergoing a series of physics 

experiments and the Mark-II core was melted 

accidentally on Nov. 29, 1955. The experiment was 

going to increase core temperature to 500C to see if 

the reactor loses reactivity, and scram when the 

power reached 1500 kW or doubling of fission rate 

per second. However the operator scrammed with a 

slow moving control and missed the shutdown by 

two seconds and caused the core meltdown. [1] 

The Korea Atomic Energy Research Institute 

(KAERI) has developed the NuSTAB code for 

stability analysis of the sodium cooled fast reactor. 

In the NuSTAB code, the coupled neutron-kinetic 

and thermal-hydraulic equations are linearized to 

form the characteristic equation, which is solved as 

a generalized eigenvalue problem for determining 

the decay ratio, an indicator of the system stability. 

NuSTAB was used to analyze stability of the U and 

final TRU fueled cores of the Prototype Gen-IV 

Sodium-Cooled Fast Reactor (PGSFR) under 

development at KAERI. [2] 

The purpose of this paper is to analyze the 

stability of the EBR-I core meltdown accident 

using the NuSTAB code. The result of NuSTAB 

analysis is compared with previous stability 

analysis by Sandmeier using the root locus method 

[3] 

 

2. Method 

1.1 NuSTAB Method 

 

The NuSTAB code solves the coupled neutron-

kinetics, fuel heat conduction, and coolant thermal-

hydraulic equations, namely  

 

Neutron kinetic equations:  
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Heat conduction equation:   

 𝑐
𝜕
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Thermal-hydraulic equation:  
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Here 
𝑔

(𝑟, 𝑡)  represents the neutron flux of energy 

group g, and 𝑇𝑓 and 𝑇𝐶𝐿  are temperatures of fuel 

and cladding, respectively. Other notations in the 

above equations are usually defined [2]. 

The differential equations can be expressed in a 

matrix equation as 

                                
𝑑𝒙

𝑑𝑡
= 𝒇(𝒙)                                  (5) 

The Taylor's theorem is used to expand the 

above equation: 

𝑑(𝒙𝑜 + 𝒙)

𝑑𝒕
= 𝒇(𝒙𝑜𝑢𝑜) +

𝒇
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Using the steady state condition, 
𝑑(𝒙𝑜)

𝑑𝒕
=

𝒇(𝒙𝑜𝑢𝑜), and ignoring terms higher than the first 

order for small x leads to 

                               
𝒅𝒙

𝒅𝒕
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The characteristic equation of the above equation 
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and algebraic equations for variable feedbacks 

forms a generalized eigenvalue problem, which has 

the eigenvalues and right/left generalized 

eigenvectors:  

The right eigenvector 𝒆𝒊 satisfies:   

                              𝑨𝒆𝒊 =  𝜆𝑖 𝑩𝒆𝒊                                (𝟖) 

The left eigenvector 𝒇𝒊 satisfies:  

                            𝒇𝑖
𝐻𝑨 = 𝜆𝒊𝒇𝑖

𝐻𝑩            (9) 

𝜆𝑖  is the i-th generalized eigenvalue, and 𝒇𝑖
𝐻 

denotes the conjugate transpose of 𝒇𝒊. 

    As a measure of stability of a dynamic 

system, the decay ratio (DR) can be used, The 

decay ratio is defined as the ratio of two 

consecutive maxima of the impulse responses of 

the oscillating variable, and if DR<1.0 a dynamic 

system is considered to be stable.[5,6] The 

dominant eigenvalue of the system can computed 

from 𝜆 =  
𝑓𝐻𝐴𝑠𝑒

𝑓𝐻𝑩𝒔𝑒
  , and the decay ratio can be 

computed from 𝐷𝑅 =  𝑒
2

𝜎
|𝜔| where =+j and 

j=√−1.  

1.2 Root-Locus Method 

 

The Root-Locus method was used by Sandmeier 

to analyze the EBR-I accident. [Ref.3] The load 

power transfer function LP(s) can be expressed as  

            LP(s) =   
𝑍𝑃(𝑠)

1 − 𝑍𝑃(𝑠)𝑃𝐾(𝑠)
                  (10) 

where the zero power transfer function, ZP(s), 

assuming using one delayed neutron group, is 

    ZP(S) ≈  
10.8(40 𝑠 + 1)(2.76 𝑠 + 1)

𝑠(9.09 𝑠 + 1)
        (11) 

and the power coefficient, K(s) for the Mark-II core 

is approximated as 

PK(s) = P 10−3 [
2
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−
3
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𝑠
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)

]   (12) 

The poles of LP(s) start at poles of ZP(s)PK(s) 

and end at the zeroes of ZP(s)PK(s). The root-locus 

method allows determination of the complete range 

of poles and zeros as the power level P is increased.  

3. Numerical Results 

The Mark-II core of EBR-I contained U-2wt% 

Zr alloy in the fuel and blanket. Enriched fuel was 

used in the core, and top and bottom blanket used 

natural uranium. Inner blanket consisted of natural-

uranium slugs. The core and the inner blanket were 

cooled by circulating sodium-potassium alloy. 

Table 1 lists the reactor parameters for EBR-I that 

were used in the stability analysis. 

The dominant eigenvalues determined by 

running NuSTAB are listed in Table 2. The 

frequencies, , of dominant eigenvalues were 

found to be very small indicating that the system is 

hardly oscillatory. Therefore, the decay ratios were 

extremely small due to such small frequencies. For 

this reason, the sign of the real part of the dominant 

eigenvalue is used to determine the system stability 

instead of using the decay ratio. That is, if the real 

part of the dominant eigenvalue is negative, the 

system is stable and vice versa. The dominants 

eigenvalues in Table 2 indicate that the reactor is 

stable until P=3.0 full power and the reactor 

becomes unstable at and above P=3.5 full power.  

 
Table 1:  EBR-I Reactor parameters  

Parameters Value 

Power,kW 

Core Height, cm 

Core Radius, cm 

fuel rod radius, cm 

Clad thickness, cm 

Gap thickness, cm 

NaK temp, in, C 

Nak temp, out, C 

Coolant velocity, cm/s 

Flow area per rod, cm2 

Reactivity coefficients: 

 Doppler,    
∆𝑘

𝑘𝐶
 

 Bowing, 
∆𝑘

𝑘𝑀𝑤
 

 Thermal expansion,  
∆𝑘

𝑘𝐶
 

1203 

21.59 

9.996 

0.48768 

0.0565 

0.02478 

230 

322 

198.12 cm/s 

0.3199 cm2 

 

 2.0 x 10−6 

 2.0 x 10−3 

-3.5 x 10−5 

 

In addition, Table 2 lists the roots of the 

feedback function LP(s) for different power levels 

computed using the root-locus method by 

Sandmeier [3]. The polynomial describing the 

poles of LP(s) is of 4th order and there will be four 

roots. Table 2 shows that at low power level, all 

roots are negative real and the reactor is stable. As 

the power level is increased, two of the roots 

remain negative real and the other two become 

negative conjugate complex until P=3.0 full power 

and the reactor is stable. As the power is further 

increased, the conjugate complex roots have 

positive real parts and the reactor becomes unstable. 
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Table 2 shows that the results of stability 

analysis for Mark-II core of EBR-I are in good 

agreement between NuSTAB and the root-locus 

method by Sandmeier. Furthermore the analyses 

suggest that the reactor became unstable above 3.5 

times full power and had the core melted. 

 

4. Conclusion 

The NuSTAB code has an advantage of 

analyzing space-dependent fast reactors and 

predicting regional oscillations compared to the 

point kinetics. Also, NuSTAB can be useful when 

the coupled neutronic-thermal-hydraulic codes 

cannot be used for stability analysis. Future work 

includes analyses of the PGSFR for various 

operating conditions as well as further validation of 

the NuSTAB calculations against SFR stability 

experiments when such experiments become 

available. 
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Table 2:  Roots by Root − Locus method and  
dominant eigenvalues 

Power 

level 

NuSTAB Root -Locus method 

Dominant eigenvalue 𝑠1 𝑠2 𝑠3 𝑠4 

1.0 

2.0 

3.0 

3.5 

3.8 

4.0 

-0.5928E+00  +0.1411E-10j 

-0.3537E+00  +0.1872E-10j 

-0.1146E+00  -0.1703E-10j 

 0.5009E-02  -0.1090E-10j 

 0.7674E-01  +0.7797E-12j 

 0.1246E+00  -0.1064E-10j 

-1.4805 

-0.9929 

-0.6529 

-0.5682 

-0.5393 

-0.5181 

-0.0086 

-0.0134 

-0.0162 

-0.0172 

-0.0176 

-0.0179 

-0.1481+0.1246j 

-0.1271+0.2348j 

-0.0334+0.3652j 

+0.0559+0.4086j 

+0.1203+0.4181j 

+0.1624+0.4213j 

-0.1481-0.1246j 

-0.1271-0.2348j 

-0.0334-0.3652j 

+0.0559-0.4086j 

+0.1203-0.4181j 

+0.1624-0.4213j 

P=1 Full Power 

 


