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 To achieve the desired operating configuration in any process, the system status needs to be 

accurately measured and monitored. 

 

 To operate within the desired limits, it is important to know the reliability of plant 

measurements of the processes. 

 

 The demand for robust and resilient performance has led to the use of online-monitoring 

techniques to monitor the process parameters. 

 

 Many empirical models are used in online monitoring of the process parameters. One of those 

models is kernel regression (KR). 
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 KR is a nonparametric technique for estimating a regression curve without making strong 

assumptions about the shape of the true regression functions. 

 

 Unlike parametric model, a nonparametric model is algorithmic estimation procedures which 

assumes no significant parameters. 

 

 KR needs no training process after its development when new observations are prepared, this 

indeed good as long as a system characteristics are also changing due to ageing phenomenon. 

 

 No need to understand the underlying physics of the system since KR is developed on the data 

from an operating system. 
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 KR, both the inferential and auto-associative models, has limitation in time-varying data that 

has several repetition of the same signal, particularly, if those signals are use to infer the other 

signals. 

 

 Whereas many situations are related to variation and fluctuation during normal state, such as 

transient – start-up and shutdown mode. 

 

 The major problem of KR in such a condition is that, the values of dependent variable y in those 

points of the same value of the predictor variables x assume value of the average of those 

dependent variable values. 

 

 Accurate estimation of the process signal can leads to the proper understanding of the 

equipment behaviors. 
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 Therefore, in this work, we proposed a modified KR model that is capable of resolving this 

setback of the conventional KR. 

 

 This can improve the efficiency/robustness, usability, and applicability of the empirical 

modeling for process and equipment monitoring, and prognostics. 
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 Motivation – the  online monitoring and the process signal validation are crucial especially in 

case of an accident when the abnormal changes of the process together with possible severe 

damage of process sensors can occur. 

 Preliminary investigations indicated that, developing a model to functions in wider range of 

application, especially, in time-varying signals will 

 Resolve the identified problem of KR, 

 lead to provisions of early warning information about the normal operational transient, & 

 Enhance the operational performance of the plant. 

 Therefore, specifically, the main objective of this work is 

 To develop a robust model for signal reconstruction through the modification of KR 

 To improve the accuracy and applicability of the model for signal reconstruction in normal 

transient state and early warning alert for proper understanding of the process and 

equipment behaviors. 

 



Given a matrix of memory data of predictor variables X and the response variable y as 

𝑋 =

𝑥1,1  𝑥1,2 ⋯ 𝑥1,𝑝
⋮       ⋮    ⋱ ⋮
𝑥𝑛,1  𝑥𝑛,2 ⋯ 𝑥𝑛,𝑝

 𝐲 =

𝑦1
𝑦2
⋮
𝑦𝑛

  

x𝑞 = 𝑥1 𝑥2 …    𝑥𝑝  

𝒅𝒊 𝑿𝒊, 𝒙𝒒 = 𝒙𝒊,𝟏 − 𝒙𝟏
𝟐
+ 𝒙𝒊,𝟐 − 𝒙𝟐

𝟐
+⋯+ 𝒙𝒊,𝒑 − 𝒙𝒑

𝟐
 

𝑲𝒊 𝑿𝒊, 𝒙𝒒 = 𝒆𝒙𝒑
−𝒅𝒊

𝟐

𝟐𝒉𝟐
 𝒚𝒊  𝒙𝒒 =

 𝑲 𝑿𝒊, 𝒙𝒒 . 𝒚𝒊
𝒏
𝒊=𝟏

 𝑲 𝑿𝒊, 𝒙𝒒
𝒏
𝒊=𝟏

 

The Euclidean distance, d, the kernel weight, k (using Gaussian kernel), and the estimated response va
riable , 𝒚  are calculated as 

where p is the number of predictor variables, n is the number of memory vectors, and x(i,j) is the ith observ
ation of the jth predictor variable. 
 
For any observed query vector, 
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 Euclidean distance, 

 Gaussian kernel weight,  Output Estimation, 
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 Model flowchart 

NOTE: 

 The modification is mainly 

on the improvement of 

measure of similarities 

used in KR. 
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 Weighting/Transformation Equation 

 Consider the diagram below as a function of the process variable. 

 Let’s consider two data points x1 and x2 and their corresponding occurrence times t1 and t2 

respectively. 

 It is obvious from the diagram that, the two triangles ∆ABE and  ∆ACD are similar. 

𝝎𝒊,𝒋 = 𝒕𝒊 ∗ 𝒎𝒊,𝒋 
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 Hence, by applying the theorem of 

similar triangles, we have 

 
 

 This implies that 

𝑨𝑪

𝑨𝑩
=
𝑫𝑪

𝑬𝑩
 

𝒙𝟐
𝒙𝟐 − 𝒙𝟏

=
𝒕𝟐

𝒕𝟐 − 𝒕𝟏
 𝒙𝟐 = 𝒕𝟐

𝒙𝟐 − 𝒙𝟏
𝒕𝟐 − 𝒕𝟏

 

𝒙𝟐 = 𝒕𝟐
∆𝒙

∆𝒕
≈ 𝒕𝟐 ∗ 𝒎 

𝒙𝟐 = 𝒕𝟐 ∗ 𝒎𝟐 
For 

multivariate  Thus 

We called the resulted data point 𝝎 
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 m is determines at each data point using finite difference derivative approximation. 

 

Taylor Series Expansion 𝒙 𝒕 + ∆𝒕 = 𝒙 𝒕 + ∆𝒕
𝒅𝒙(𝒕)

𝒅𝒕
+
(∆𝒕)𝟐

𝟐!

𝒅𝟐𝒙(𝒕)

𝒅𝒕𝟐
+
(∆𝒕)𝟑

𝟑!

𝒅𝟑𝒙(𝒕)

𝒅𝒕𝟑
+⋯⋯ 

Forward difference 

𝒎𝒊,𝒋 =
𝒅𝒙

𝒅𝒕
=
−𝒙𝒊+𝟐,𝒋 + 𝟒𝒙𝒊+𝟏,𝒋 − 𝟑𝒙𝒊,𝒋

𝟐∆𝒕
 

Backward difference Central difference 

𝒎𝒊,𝒋 =
𝒅𝒙

𝒅𝒕
=
𝟑𝒙𝒊,𝒋 − 𝟒𝒙𝒊−𝟏,𝒋 + 𝒙𝒊−𝟐,𝒋

𝟐∆𝒕
 𝒎𝒊,𝒋 =

𝒅𝒙

𝒅𝒕
=
𝒙𝒊+𝟏,𝒋 − 𝒙𝒊−𝟏,𝒋

𝟐∆𝒕
 

𝑀 =

𝑚1,1  𝑚1,2 ⋯ 𝑚1,𝑝

⋮       ⋮    ⋱ ⋮
𝑚𝑛,1  𝑚𝑛,2 ⋯ 𝑚𝑛,𝑝

 Thus, we define a slope matrix, 

 Gradient/slope approximation 

 In this equation, the information from previous input vectors is incorporated into the KR 

through the slope m and time t of the current input vector. 

 This in fact will gives a more details representation of the estimations compare to that of 

the conventional KR that ignored any information leading to the current data point. 

𝝎𝒊,𝒋 = 𝒕𝒊 ∗ 𝒎𝒊,𝒋 
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 The resulted Distance 

 Hence, by applying the transformation equation, the memory/train data X and the 

query/test data can be transformed as follows: 

𝑋 =

𝑥1,1  𝑥1,2 ⋯ 𝑥1,𝑝
⋮       ⋮    ⋱ ⋮
𝑥𝑛,1  𝑥𝑛,2 ⋯ 𝑥𝑛,𝑝

 ⟹  𝑊 =

𝜔1,1  𝜔1,2 ⋯ 𝜔1,𝑝

⋮       ⋮    ⋱ ⋮
𝜔𝑛,1  𝜔𝑛,2 ⋯ 𝜔𝑛,𝑝

 

x𝑞 = 𝑥𝑞,1 𝑥𝑞,2 …    𝑥𝑞,𝑝  ⟹  𝑊𝑞 = 𝜔𝑞,1 𝜔𝑞,2 …    𝜔𝑞,𝑝  

 Thus, the Euclidian distance for any given query vector can be calculated by 

𝒅𝒊 𝑿𝒊, 𝒙𝒒 =
𝝎𝒊,𝟏 −𝝎𝒒,𝟏

𝟐

𝝈𝟏
𝟐 +

𝝎𝒊,𝟐 −𝝎𝒒,𝟐
𝟐

𝝈𝟐
𝟐 +⋯+

𝝎𝒊,𝒑 −𝝎𝒒,𝒑
𝟐

𝝈𝒑
𝟐

 

Where σi
2 = the variance of the transformed predictor variable i. 

𝒅𝒊 𝑿𝒊, 𝒙𝒒 = 𝒙𝒊,𝟏 − 𝒙𝟏
𝟐
+ 𝒙𝒊,𝟐 − 𝒙𝟐

𝟐
+⋯+ 𝒙𝒊,𝒑 − 𝒙𝒑

𝟐
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 To test the performance of the developed model, two different kinds of datasets are used. 

 Lab experimental data generated from heat conduction experiment to evaluate the performance 

of the model and compare the results with the conventional KR. 

 Real time simulation data of heating and cooling from compact nuclear simulator (CNS) 

provided by KAERI. 

 Lab Experimental Data CNS Data 
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 x1 and x2 are independent variables that are used to estimate/predict the value of Y. 

 In the lab expt. data, Y is a temperature data, while x1 and x2 are the artificially generated data. 

 In the CNS data, all the variables are the real plant simulation data 

 

 

 The measure of performance of the model used is mean square error (MSE). 

 MSE is used as a measure of accuracy of the prediction of the models. 

 

𝑀𝑆𝐸 =  
1

𝑁
 𝑦𝑖𝑒𝑠𝑡 − 𝑦𝑖

2

𝑁

𝑖=1

 

 where yiest is the estimated value and yi is the actual value. N is the number of data 

points/observations used as test data. 
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Modified KR model 

Conventional KR model 

Results of the Lab Experimental Data 

MODELS LAB EXPERIEMENT CNS DATA 

Conventional KR 

MSE (%) 
63.26 14.43 

Modified KR 

MSE (%) 
0.086 0.009 
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Modified KR model 

Conventional KR model 

Results of the CNS Data 

MODELS LAB EXPERIEMENT CNS DATA 

Conventional KR 

MSE (%) 
63.26 14.43 

Modified KR 

MSE (%) 
0.086 0.009 
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 The conventional KR has limitation in correctly estimating the signals when time-varying data 

with repeated values are used to estimate the dependent variable especially in signal 

reconstruction, validation and monitoring. 

 we presented here in this work a modified KR that can resolve this issue in time domain. 

 A time-dependent equation was developed first to transform the data into another space prior to 

the Euclidian distance calculation considering their slopes/changes with respect to time. 

 The performance of the developed model is evaluated and compared with that of conventional 

KR using both the lab experimental data and the real time plant data of CNS provided by 

KAERI. 

 The results show that the proposed model, having demonstrated high performance accuracy 

than that of conventional KR in signal reconstruction, is capable of resolving the identified 

limitation with conventional KR, and can be used to improve process and equipment 

monitoring applications. 
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