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1. Introduction 

 
In order to achieve the desired operating 

configuration in any process plant, the system status 

needs to be accurately measured. Also, for a system to 

operate within the desired limit, it is essential to know 

the reliability of the plant measurements. Therefore, the 

demand for robust and resilient performance has led to 

the use of online-monitoring techniques to monitor the 

process parameters and signal validation. On-line 

monitoring and signal validation techniques are the two 

important terminologies in process and equipment 

monitoring. These techniques are automated methods of 

monitoring instrument performance while the plant is 

operating [1,2]. To implementing these techniques, 

several empirical models are used [1-4]. One of these 

models is nonparametric regression model, otherwise 

known as kernel regression (KR). 

Unlike parametric models, KR is an algorithmic 

estimation procedure which assumes no significant 

parameters, and it needs no training process after its 

development when new observations are prepared; 

which is good for a system characteristic of changing 

due to ageing phenomenon. Although KR is used and 

performed excellently when applied to steady state or 

normal operating data, it has limitation in time-varying 

data that has several repetition of the same signal, 

especially if those signals are used to infer the other 

signals. In addition, many situations are related to 

variation and fluctuation, such as transient – start-up 

and shutdown mode. The major problem of KR in such 

a condition is that, the values of dependent variable in 

those points of the same value of the predictor variables 

assume value of the average of those dependent variable 

values. However, accurate estimation of the process 

signal can lead to the proper understanding of the 

equipment behaviours as well as enhance the online 

monitoring applications. Therefore, in this work, we 

proposed a modified KR model for robust signal 

reconstruction to resolve the setback of convectional 

KR. 

 

2. Overview of Kernel Regression 

 

In this section the convectional KR model is briefly 

introduced.  

Given a matrix of memory data of predictor variables 

X and the response variable y as 

 

𝐲 = [𝑦1 𝑦2     ⋯ 𝑦𝑛]𝑇 

 

𝑋 = [

𝑥1,1  𝑥1,2 ⋯ 𝑥1,𝑝

⋮       ⋮    ⋱ ⋮
𝑥𝑛,1  𝑥𝑛,2 ⋯ 𝑥𝑛,𝑝

] 

where p is the number of predictor variables, n is the 

number of memory vectors, and x(i,j) is the ith 

observation of the jth predictor variable. 

Then, for any observed query vector, 

 

x𝑞 = [𝑥1 𝑥2 …    𝑥𝑝] 

 

the Euclidean distance, d, the kernel weight (Gaussian 

kernel), k and the estimated response variable,   ̂ are 

calculated as follows: 
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where h is the bandwidth of the kernel. 

The kernel regression can be modelled in three 

different ways [3]: inferential (IKR), auto-associative 

(AAKR) and hetero-associative (HAKR) models 

depending on the desired model for a particular 

application, as shown in Fig.1. 

 

 
 
Fig. 1. Three different models of kernel regression 
 

3. Methods and Results 

 

In this section the approaches used to develop the 

modified KR are presented, and the results are 

discussed.  

 

3.1 Development of Modified KR Model 

The model flowchart is shown in Fig. 2. The 

modification is mainly on the improvement of measure 

of similarities used in KR prior to the distance 

calculation. We developed time dependent KR by 

taking the gradient/slope of the data into consideration. 

Generally, the historical data use to build the empirical 
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models are collected at a particular time interval during 

operation. Let’s assume that the data are evenly spaced 

with time interval of   , mathematically, to determine 

the slope or gradient of a non-linear function at any 

given point along the curve of the function, a straight 

line tangential to the curve is drawn at that point. 

Thus, by taking an arbitrary point x’ to be 

immediately after the point x1 and before the point x2 

which occurs half-way of   , then we have, 

𝑥 = 𝑥1    
 

 
    

where m is the first derivative or slope/gradient of the 

function at point x1. 

In this case, we need to determine the slope of the 

function at each data point. To calculate the slope at any 

given point, we applied the finite difference derivative 

approximations which are derived from the Taylor 

series expansion, 
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For nxp matrix X of the given data, the forward 

difference, backward difference, and central difference 

derivative approximation based on three points can be 

evaluated respectively as follows: 
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These yield the slope/gradient matrix M as 

 

 = [

 1,1   1,2 ⋯  1,𝑝

⋮        ⋮     ⋱ ⋮
 𝑛,1   𝑛,2 ⋯  𝑛,𝑝

] 

 

 
Fig. 1. Flowchart of the developed model. 

Hence, the transformed/adjusted X matrix can then 

be expressed as 

𝑋 = [

𝑥1,1 ⋯ 𝑥1,𝑝

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑝

]  [

 1,1 ⋯  1,𝑝

⋮ ⋱ ⋮
 𝑛,1 ⋯  𝑛,𝑝

]  
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where 
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 = 𝑥 ,    , (

 

 
  ) 

 

Then, the Euclidian distance for any given query 

vector can be calculated as 
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Where   
2  is the variance of the transformed predictor 

variable p 

This distance is then used to calculate the kernel weight 

using Gaussian kernel given in section 2, and estimate 

the dependent variables. 

There are two path modes in the flowchart presented 

in Fig.1: the training path mode and the execution path 

mode. The proposed model at first, takes the training 

path by taking the historical data collected during plant 

operation from which the model is trained based on the 

developed algorithms. When a satisfactory training 

model is achieved, the model stored the trained data 

which can then be used for online monitoring to predict 

the signal values for any online query data vector at a 

particular time. It is worth noting that, as indicated in 

the flowchart, the model needs to get the initial three 

successive query vectors to enable it evaluate the 

gradient of those three vectors using finite difference 

derivative approximation that depends on three data 

points for evaluations. At this initial condition, the 

model evaluates the gradient of the three vectors using 

forward, central, and backward differences for the first, 

second, and third vectors respectively. Subsequently, 

the model continues to stores the two immediate 

previous vectors and uses it to evaluate the gradient of 

any subsequent available query vector using central 

difference approximation. 

 

3.2 Results 

 

In order to test our developed model, two difference 

kinds of data are used. Firstly, we used the lab 

experimental data generated from heat conduction 

experiment to evaluate the performance of the model 

and compare the results with the convectional KR.  

Secondly, we used the real time simulation data from 

compact nuclear simulator (CNS) provided by KAERI. 
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This data is a cooling and heating data collected during 

heating up from cool-down mode, which represents a 

normal transient data. Although, this data may not be 

transient enough, however, we used it to demonstrate 

the performance of the developed model. The two kinds 

of the data used are respectively shown in Fig. 2 and 

Fig. 3. In both Fig. 2 and Fig. 3, x1 and x2 are 

independent variables that are used to estimate/predict 

the value of Y. The results are shown in Figs. 4, 5, 6, 

and 7. The mean square error (MSE) are calculated and 

used to evaluate the performance of the models as, 

   =  
 

 
∑ 𝑦     𝑦  

2

 

  1

 

where yiest is the estimated value and yi is the actual 

value. N is the number of data points/observations. 

 

 
Fig. 2. Lab Experimental data. 

 

 
Fig. 3. CNS data collected during heating up cold-down mode. 

 

From the results of the lab experimental data shown 

in Fig. 4 and Fig. 5 respectively for modified KR and 

Convectional KR, the MSE of the convectional KR is 

about 62 times larger than that of modified KR. In 

another word, the accuracy of a modified KR prediction 

is 62 times better than that of convectional KR. We 

discovered that the convectional KR has several 

deviations due to the fact that, it does not take the 

fluctuations or changes or slopes of the data series into 

consideration. Whereas, the modified KR though has 

shown a greater performance, also have few points of 

deviation. This might be due to the differences between 

the gradients of the data points which are not taking into 

consideration presently in this study, for computing the 

weight of similarities between the data points. We 

discovered that the impact is largely the contribution 

from the dependent variable x1 shown in Fig. 2. 

However further studies is ongoing to resolve this 

issues so as to make the model more general. 

 

 
Fig. 4. Estimated dependent variable, Y by a modified KR 

model (Lab experimental data). 
 

 
Fig. 5. Estimated dependent variable, Y by a convectional KR 

model (Lab experimental data). 
 

 
Fig. 6. Estimated signal by modified KR model (CNS data). 
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The results of the prediction from CNS data are 

respectively shown in Fig. 6 and Fig. 7 for modified KR 

and convectional KR. Also, as shown in the results, the 

modified KR still performed better than the 

convectional KR. In this case, the convectional KR 

MSE is much lower than its MSE in experimental data. 

This is because the dependent variables are not too 

transients compare to experimental data, and the 

fluctuations are not extremely frequent as that of the 

experimental data. 

 

 
Fig. 7. Estimated signal by Convectional KR model (CNS 

data). 
 

4. Conclusions 

 

The convectional KR has limitation in correctly 

estimating the dependent variable when time-varying 

data with repeated values are used to estimate the 

dependent variable especially in signal validation and 

monitoring. Therefore, we presented here in this work a 

modified KR that can resolve this issue which can also 

be feasible in time domain. Data are first transformed 

prior to the Euclidian distance evaluation considering 

their slopes/changes with respect to time. The 

performance of the developed model is evaluated and 

compared with that of conventional KR using both the 

lab experimental data and the real time data from CNS 

provided by KAERI. The result shows that the proposed 

developed model, having demonstrated high 

performance accuracy than that of conventional KR, is 

capable of resolving the identified limitation with 

convectional KR. We also discovered that there is still 

need to further improve our model to make it more 

generalized as well for more robustness than the current 

performance. Therefore, the further study is on-going to 

resolve these issues and to also considering the different 

domains (time and frequency domains) as well as 

different level of derivatives. 
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